OntoCAPE pp 109-162 | Cite as

Upper Level

  • Wolfgang MarquardtEmail author
  • Jan Morbach
  • Andreas Wiesner
  • Aidong Yang
Part of the RWTHedition book series (RWTH)


The partial model upper_level is located on the Upper Layer of OntoCAPE. It establishes the fundamental organizational paradigm for the ontology and states the principles governing its design and evolution. The concepts introduced by the upper_level partial model are generic in the sense that they are applicable to different domains; thus, the partial model resembles the meta_model (Chap. 4) in this respect. Yet unlike the Meta Model concepts, the concepts of the upper_level are intended for direct use and will be passed on to the domain-specific parts of OntoCAPE.


Physical Quantity Formal Definition Technical System System Requirement Scalar Quantity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberts LK (1994) YMIR: a sharable ontology for the formal representation of engineering design knowledge. In: Gero JS, Tyugu E (eds.): Formal Design Methods for CAD. Elsevier, New York:3–32.Google Scholar
  2. Andresen T (1999) The macroeconomy as a network of money-flow transfer functions. Model. Ident. Contr. 19 (4):207-223.Google Scholar
  3. Barkmeyer EJ, Feeney AB, Denno P, Flater DW, Libes DE, Steves MP, Wallace EK (2003) Concepts for Automating Systems Integration. Technical Report (NISTIR 6928), National Institute of Standards and Technology (NIST), Gaithersburg, MD.Google Scholar
  4. Baxter JE, Juster NP, de Pennington A (1994) A functional data model for assemblies used to verify product design specifications. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 208 (B4):235-244.CrossRefGoogle Scholar
  5. Bayer B (2003) Conceptual Information Modeling for Computer Aided Support of Chemical Process Design. Fortschritt-Berichte VDI: Reihe 3, Nr. 787. VDI-Verlag, Düsseldorf.Google Scholar
  6. Bayer B, Krobb C, Marquardt W (2001) A Data Model for Design Data in Chemical Engineering - Information Models, Technical Report LPT-2001-15, Lehrstuhl für Prozesstechnik, RWTH Aachen University.Google Scholar
  7. Bertalanffy L (1968). General System Theory: Foundations, Development, Applications, Braziller, New York.Google Scholar
  8. Bilgic T, Rock D (1997) Product data management systems: State-of-the-art and the future. In: Proceedings of the 1997 ASME Design Engineering Technical Conferences, Sacramento, CA.Google Scholar
  9. BIPM (2006) The International System of Units (SI), 8th edition. SI brochure, published by the International Committee for Weights and Measures (Bureau International des Poids et Measures, BIPM). Online available at Accessed 26 September 2007.
  10. Borst WN (1997) Construction of Engineering Ontologies for Knowledge Sharing and Reuse, PhD Thesis, Centre of Telematics and Information Technology, University of Twente.Google Scholar
  11. Bunge M (1979) Treatise on Basic Philosophy, Volume 4. Ontology II: A World of Systems. Reidel, Dordrecht.Google Scholar
  12. Chandrasekaran B (1994) Functional representation and causal processes. In: Yovits MC (ed.): Advances in Computers. Academic Press, New York.Google Scholar
  13. Chandrasekaran B, Josephson JR (2000) Function in device representation. J. Eng. Comput. 16 (3/4):162-177.CrossRefGoogle Scholar
  14. Föllinger O (1982) Einführung in die Zustandsbeschreibung dynamischer Systeme. Oldenbourg, München.Google Scholar
  15. Gigch JP (1991) System Design Modeling and Metamodeling. Springer, New York.Google Scholar
  16. Gilles ED (1998) Network theory for chemical processes. Chem. Eng. Technol. 21 (8):121–132.CrossRefGoogle Scholar
  17. Gruber TR, Olsen GR (1994) An Ontology for Engineering Mathematics. In: Doyle J, Torasso P, Sandewall E (eds.): Proceedings of Fourth International Conference on Principles of Knowledge Representation and Reasoning. Morgan Kaufmann. Online available at Accessed September 2007.
  18. IEEE (2000) IEEE Recommended Practice for Architectural Description for Software-Intensive Systems. IEEE Standard 1471-2000, Institute for Electrical and Electronics Engineering, New York.Google Scholar
  19. Kitamura Y, Mizoguchi R (2003) Ontology-based description of functional design knowledge and its use in a functional way server. Expert Syst. Appl. 24 (2):153-166.CrossRefGoogle Scholar
  20. Klir GJ (1985) Architecture of Systems Problem Solving. Plenum Press, New York.Google Scholar
  21. Mangold M, Angeles-Palacios O, Ginkel M, Kremling A, Waschler R, Kienle A, Gilles ED (2005) Computer-aided modeling of chemical and biological systems: methods, tools and applications. Ind. Eng. Chem. Res. 44:2579–2591.CrossRefGoogle Scholar
  22. Marquardt W (1992a). An object-oriented representation of structured process models. Comput. Chem. Eng. 16:329–336.Google Scholar
  23. Marquardt W (1994b) Computer-aided generation of chemical engineering process models. Int. Chem. Eng. 34:28–46.Google Scholar
  24. Marquardt W (1995) Towards a Process Modeling Methodology. In: R. Berber: Methods of Model-Based Control. NATO-ASI E, Applied Sciences, 293, Kluwer, Dordrecht:3-41.Google Scholar
  25. Marquardt W (1996) Trends in computer-aided process modeling. Comput. Chem. Eng. 20 (6/7):591–609.CrossRefGoogle Scholar
  26. Marquardt W, von Wedel L, Bayer B (2000) Perspectives on lifecycle process modeling. In: Malone MF, Trainham JA, Carnahan B (eds.): Foundations of Computer–Aided Process Design, AIChE:192–214.Google Scholar
  27. Morbach J, Yang A, Marquardt W (2007) OntoCAPE – A large-scale ontology for chemical process engineering. Eng. Appl. Artif. Intell. 20(2):147-161.CrossRefGoogle Scholar
  28. Patzak G (1982) Systemtechnik – Planung komplexer innovativer Systeme. Springer, Berlin.Google Scholar
  29. Rector A, Welty C, eds. (2005) Simple part-whole relations in OWL Ontologies. W3C Editor’s Draft, 11 August 2005. Online available at Accessed November 2007.
  30. Szykman S, Sriram RD, Regli WC (2001) The role of knowledge in next-generation product development systems. J. Comput. Inf. Sci. Eng. 1 (1):3–11.CrossRefGoogle Scholar
  31. Thomé B, ed. (1993) Systems Engineering: Principles and Practice of Computer -based Systems Engineering. John Wiley, New York.Google Scholar
  32. VIM (1993) International Vocabulary of Basic and General Terms in Metrology (VIM), 2nd Edition. Jointly prepared by ISO, IEC, BIPM, IFCC, IUPAC, IUPAP and OIML. Published by ISO, Geneva, as ISO Guide 99:1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Wolfgang Marquardt
    • 1
    Email author
  • Jan Morbach
    • 1
  • Andreas Wiesner
    • 1
  • Aidong Yang
    • 2
  1. 1.AVT-Process Systems EngineeringRWTH Aachen UniversityAachenGermany
  2. 2.Fac. Engineering & Physical SciencesUniversity of SurreyGuildfordUK

Personalised recommendations