Advertisement

OntoCAPE pp 435-463 | Cite as

Bibliography

  • Wolfgang MarquardtEmail author
  • Jan Morbach
  • Andreas Wiesner
  • Aidong Yang
Chapter
Part of the RWTHedition book series (RWTH)

Abstract

Abecker A, Bernardi A, Hinkelmann K, Kühn O, Sintek M (1998) Toward a technology for organizational memories. IEEE Intell. Syst. 13 (3):40–48.

Keywords

Description Logic Core Ontology Product Data Management System Industrial Automation System CEUR Workshop Proceeding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abecker A, Bernardi A, Hinkelmann K, Kühn O, Sintek M (1998) Toward a technology for organizational memories. IEEE Intell. Syst. 13 (3):40–48.CrossRefGoogle Scholar
  2. Ackoff RL (1989) From data to wisdom. J. Appl. Syst. Anal. 16:3–9.Google Scholar
  3. Aitken S (1998) Extending the HPKB-upper-level ontology: experiences and observations. In: Proceedings of the ECAI-98 Workshop on Applications of Ontologies and Problem-Solving Methods:11–15.Google Scholar
  4. Alberts LK (1994) YMIR: a sharable ontology for the formal representation of engineering design knowledge. In: Gero JS, Tyugu E (eds.): Formal Design Methods for CAD. Elsevier, New York:3–32.Google Scholar
  5. Amin MA, Morbach J (2007) XML to OWL Converter. Technical Report (LPT-2007-02), Lehrstuhl für Prozesstechnik, RWTH Aachen University.Google Scholar
  6. Amin MA, Morbach J (2008) DAML+OIL to OWL converter. Online available at http://www.avt.rwth-aachen.de/AVT/index.php?id=523. Accessed January 2008.
  7. Andresen T (1999) The macroeconomy as a network of money-flow transfer functions. Model. Ident. Contr. 19 (4):207–223.Google Scholar
  8. Anhäuser F, Richert H, Temmen H (2004) Degussa PlantXML – integrierter Planungsprozess mit flexiblen Bausteinen. Autom. Tech. Prax. 46 (10):61 – 71.Google Scholar
  9. Arpírez JC, Gómez-Pérez A, Lozano A, Pinto HS (1998) (ONTO)2Agent: an ontology – based WWW broker to select ontologies. In: Proceedings of the ECAI-98 Workshop on Applications of Ontologies and Problem-Solving Methods:16–24.Google Scholar
  10. AspenTech (2008) Aspen Plus. Online available at http://www.aspentech.com/products/aspen-plus.cfm. Accessed June 2008.
  11. Atkinson C, Kühne T (2002) The role of metamodeling in MDA. In: Proceedings of the Workshop in Software Model Engineering (in conjunction with UML’02, Dresden, Germany). Online available at http://www.metamodel.com/wisme-2002/papers/atkinson.pdf. Accessed January 2008.
  12. AVEVA (2008). AVEVA NET – website. Online available at http://www.aveva.com/products_services_aveva_net.php. Accessed June 2008.
  13. Awad EM, Ghaziri HM (2003) Knowledge Management. Prentice Hall, New Jersey.Google Scholar
  14. Baader F, Calvanese D, McGuinness DL, Nardi D, Patel-Schneider PF (2003) The Description Logic Handbook: Theory, Implementation, Applications. Cambridge University Press, Cambridge.Google Scholar
  15. Bañares-Alcántara R, Lababidi HMS (1995) Design support systems for process engineering. – II. KBDS: An experimental prototype. Comput. Chem. Eng. 19:279–301.CrossRefGoogle Scholar
  16. Bañares-Alcántara R, Kokossis A, Aldea A, Jiménez L, Linke P (2003) A knowledge management platform to extract and process information from the Web, In: Chen B, Westerberg AW (eds.): Process Systems Engineering 2003. Elsevier:1262–1267.Google Scholar
  17. Bard JBL, Rhee SY (2004) Ontologies in biology: design, applications and future challenges. Nat. Rev. Genet. 5:213–222.CrossRefGoogle Scholar
  18. Barkmeyer EJ, Feeney AB, Denno P, Flater DW, Libes DE, Steves MP, Wallace EK (2003) Concepts for Automating Systems Integration. Technical Report (NISTIR 6928), National Institute of Standards and Technology (NIST), Gaithersburg, MD.Google Scholar
  19. Batres R, Naka Y (2000) Process plant ontologies based on a multi-dimensional framework. In: Malone MF, Trainham JA, Carnahan B (eds.): Fifth International Conference on Foundations of Computer-Aided Process Design. AIChE:433–437.Google Scholar
  20. Batres R, Naka Y, Lu ML (1999) A multidimensional design framework and its implementation in an engineering design environment. Concur. Eng. 7 (1):43–54.CrossRefGoogle Scholar
  21. Batres R, Aoyama A, Naka Y (2002) A life-cycle approach for model reuse and exchange. Comput. Chem. Eng. 26 (4/5):487–498.CrossRefGoogle Scholar
  22. Batres R, West M, Leal D, Price D, Masaki K, Shimada Y, Fuchino T, Naka Y (2007) An upper ontology based on ISO 15926. Comput. Chem. Eng. 31 (5/6):519–534.CrossRefGoogle Scholar
  23. Baumeister M (2000) Ein Objektmodell zur Repräasentation und Wiederverwendung verfahrenstechnischer Prozeßmodelle. PhD thesis (LPT-diss-2000-12), Lehrstuhl für Prozesstechnik, RWTH Aachen University. Online available at http://www.avt.rwth-aachen.de/AVT/index.php?id=541&L=0&Nummer=LPT-diss-2000-02.
  24. Baumeister M, Marquardt W (1998) The chemical engineering data model VeDa, part 1: VDDL – The Language Definition. Technical Report (LPT-1998-01), Lehrstuhl für Prozesstechnik, RWTH Aachen University.Google Scholar
  25. Baxter JE, Juster NP, de Pennington A (1994) A functional data model for assemblies used to verify product design specifications. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 208 (B4):235-244.CrossRefGoogle Scholar
  26. Bayer B (2003) Conceptual Information Modeling for Computer Aided Support of Chemical Process Design. Fortschritt-Berichte VDI: Reihe 3, Nr. 787. VDI-Verlag, Düsseldorf.Google Scholar
  27. Bayer B, Marquardt W (2003) A Comparison of Data Models in Chemical Engineering. Concur. Eng. 11 (2):129-138.CrossRefGoogle Scholar
  28. Bayer B, Marquardt W (2004) Towards integrated information models for data and documents. Comput. Chem. Eng. 28 (8):1249–1266.Google Scholar
  29. Bayer B, Marquardt W (2009) A Conceptual Information Model for the Chemical Process Design Lifecycle. In : Jarke M, Jeusfeld M, Mylopoulos J (eds.): Meta Modeling and Method Engineering, MIT:357-381.Google Scholar
  30. Bayer B, Krobb C, Marquardt W (2001) A Data Model for Design Data in Chemical Engineering – Information Models. Technical Report LPT–2001–15. Lehrstuhl für Prozesstechnik, RWTH Aachen University.Google Scholar
  31. Bayer B, Schneider R, Marquardt W (2000) Integration of data models for process design – First steps and experiences. Comput. Chem. Eng. 24, 599-605.CrossRefGoogle Scholar
  32. Bechhofer S, Horrocks I, Goble C, Stevens R (2001) OilEd: a reasonable ontology editor for the semantic web. In: Baader F, Brewka G, Eiter T (eds.): KI 2001: Advances in Artificial Intelligence. Springer, Berlin:396–408.CrossRefGoogle Scholar
  33. Bechhofer S, van Harmelen F, Hendler J, Horrocks I, McGuinness D, Patel-Schneider L, Stein LA (2004) OWL Web Ontology Language Reference. W3C Recommendation, 10 February 2004. Online available at http://www.w3.org/TR/owl-ref/. Accessed September 2007.
  34. Becker S, Nagl M, Westfechtel B (2008a) Incremental and interactive integrator tools for design product consistency. In: Nagl M, Marquardt W (eds.): Collaborative and Distributed Chemical Engineering. Springer, Berlin:224–267.Google Scholar
  35. Becker S, Marquardt W, Morbach J, Nagl M (2008b) Model dependencies, fine-grained relations, and integrator tools. In: Nagl M, Marquardt W (eds.): Collaborative and Distributed Chemical Engineering. Springer, Berlin:612–620.Google Scholar
  36. Bernaras A, Laresgoiti I, Corera J (1996) Building and reusing ontologies for electrical network applications. In: Wahlster W (ed.): ECAI 1996 – Proceedings of the 12th European Conference on Artificial Intelligence. John Wiley, New York:298–302.Google Scholar
  37. Bertalanffy L (1968) General System Theory: Foundations, Development, Applications. Braziller, New York.Google Scholar
  38. Bieszczad J (2000) A Framework for the Language and Logic of Computer-Aided Phenomena-Based Process Modeling. PhD Thesis, Department of Chemical Engineering, Massachusetts Institute of Technology.Google Scholar
  39. Biegler LT, Grossmann IE, Westerberg AW (1997) Systematic Methods of Chemical Process Design. Prentice-Hall.Google Scholar
  40. Bilgic T, Rock D (1997) Product data management systems: State-of-the-art and the future. In: Proceedings of the 1997 ASME Design Engineering Technical Conferences, Sacramento, CA.Google Scholar
  41. BIPM (2006) The International System of Units (SI), 8 th edition. SI brochure, published by the International Committee for Weights and Measures (Bureau International des Poids et Measures, BIPM). Online available at http://www.bipm.fr/en/si/si_brochure/. Accessed September 2007.
  42. BIPM (2007) BIPM: Bureau International des Poids et Mesures. Website, available at www.bipm.org. Accessed October 2007.
  43. Bird RB, Stewart WE, Lightfoot EN (2001) Transport Phenomena. John Wiley, New York.Google Scholar
  44. Biron PV, Permanente K, Malhotra A (2004) XML Schema Part 2: Datatypes Second Edition. W3C Recommendation. Online available at http://www.w3.org/TR/xmlschema-2/. Accessed January 2007.
  45. Black PE, ed. (2004) Data structure. In: Dictionary of Algorithms and Data Structures. U.S. National Institute of Standards and Technology. Online available at http://www.itl.nist.gov/div897/sqg/dads/. Accessed January 2009.
  46. Blitz D (1992) Emergent Evolution, Qualitative Novelty and the Kinds of Reality. Springer.Google Scholar
  47. Bodenreider O (2001) Medical Ontology Research. Technical Report, Lister Hill National Center for Biomedical Communications, U.S. National Library of Medicine. Online available at http://mor.nlm.nih.gov:8000/pubs/pdf/2001-MOR-BoSC.pdf. Accessed February 2008.
  48. Bogusch R (2001) A Software Environment for Computer-Aided Modeling of Chemical Processes. Fortschritt-Berichte VDI: Reihe 3, Nr. 705, VDI-Verlag, Düsseldorf.Google Scholar
  49. Bogusch R, Marquardt W (1998) The Chemical Engineering Data Model VeDa. Part 4: Behavioral Modeling Objects. Technical Report (LPT-1998-04), Lehrstuhl für Prozesstechnik, RWTH Aachen University.Google Scholar
  50. Bogusch R, Lohmann B, Marquardt W (2001) Computer-aided process modeling with ModKit. Comput. Chem. Eng. 25 (7/8):963–995.CrossRefGoogle Scholar
  51. Borst P, Akkermans JM, Top JL (1997) Engineering ontologies. Int. J. Hum Comput Stud. 46:365–406.CrossRefGoogle Scholar
  52. Borst P, Akkermans JM, Pos A, Top JL (1995) The PhySys ontology for physical systems. In: Bredeweg (ed.): Proceedings of the 9 th International Workshop on Qualitative Reasoning. University of Amsterdam:11–21.Google Scholar
  53. Borst WN (1997) Construction of Engineering Ontologies for Knowledge Sharing and Reuse. PhD Thesis, Centre for Telematics and Information Technology, University of Twente.Google Scholar
  54. Brandt SC, Schlüter M, Jarke M (2006) A process data warehouse for tracing and reuse of engineering design processes. Int. J. Intell. Inf. Technol. 2 (4):18–26.Google Scholar
  55. Brandt SC, Fritzen O, Jarke M, List T (2008a) Goal-oriented information flow management in development processes. In: Nagl M, Marquardt W (eds.): Collaborative and Distributed Chemical Engineering. Springer, Berlin:369–400.Google Scholar
  56. Brandt SC, Morbach J, Miatidis M, Theißen M, Jarke M, Marquardt W (2008b) An ontology-based approach to knowledge management in design processes. Comput. Chem. Eng. 32:320–342.Google Scholar
  57. Braunschweig B, Gani R, eds. (2002) Software Architecture and Tools for Computer Aided Process Engineering. Elsevier Science B.V.Google Scholar
  58. Braunschweig B, Fraga ES, Guessoum Z, Paen D, Piñol D, Yang A (2002) CO-Gents: cognitive middleware agents to support e-CAPE. In: Stanford-Smith B, Chiozza E, Edin M (eds.): Challenges and Achievements in E–business and E–work. IOS Press:1182–1189.Google Scholar
  59. Braunschweig B, Fraga ES, Guessoum Z, Marquardt W, Nadjemi O, Paen D, Piñol D, Roux P, Sama S, Serra M, Stalker I, Yang A (2004) CAPE web services: the COGents way. In: Barbarosa-Póvoa, A., Matos, H (eds.): European Symposium on Computer Aided Process Engineering -14. Elsevier, Amsterdam:1021–1026.Google Scholar
  60. Bray T, Hollander D, Layman A, Tobin R, eds. (2006a) Namespaces in XML 1.0 (Second Edition). W3C Recommendation, 16 August 2006. Online available at http://www.w3.org/TR/xml-names. Accessed September 2008.
  61. Bray T, Paoli J, Sperberg-McQueen CM, Maler E, Yergeau F, eds. (2006b). Extensible Markup Language (XML) 1.0 (Forth Edition). W3C Recommendation, 16 August 2006. Online available at http://www.w3.org/TR/xml/. Accessed September 2008.
  62. Brickley D, Guha RV, eds. (2004). RDF Vocabulary Description Language 1.0: RDF Schema. W3C Recommendation, 10 February 2004. Online available at http://www.w3.org/TR/rdf-schema/. Accessed September 2008.
  63. Britt H, Chen C, Mahalec V, McBrien A (2004) Modeling and simulation in 2004: an industrial perspective. In: Proceedings of the 6 th International Conference on Foundations of Computer Aided Process Design, CACHE Publications, 55–68.Google Scholar
  64. Bunge M (1979) Treatise on Basic Philosophy, Volume 4. Ontology II: A World of Systems. Reidel, Dordrecht.Google Scholar
  65. Bylander T, Chandrasekaran B (1988) Generic tasks in knowledge-based reasoning: the right level of abstraction for knowledge acquisition. In: Gaines B, Boose J (eds.): Knowledge Acquisition for Knowledge-Based Systems. Academic Press, London:65–77.Google Scholar
  66. Cameron I, Hangos K, Stephanopolous G, Perkins J (2001) Process Modeling and Model Analysis. Academic Press.Google Scholar
  67. Carlisle D, Ion P, Miner R, Poppelier N, eds. (2003) Mathematical Markup Language (MathML) Version 2.0 (Second Edition). W3C Recommendation, online available at http://www.w3.org/TR/MathML2/. Accessed September 2007.
  68. CAS (2007) CAS Registry Overview. Website, online available at http://www.cas.org/EO/regsys.html. Accessed February 2007.
  69. Casati R, Varzi A (1999) Parts and Places: The Structures of Spatial Representation. MIT Press.Google Scholar
  70. Cellier FE, Kofman E (2006) Continuous System Simulation. Springer, Berlin.Google Scholar
  71. Chandrasekaran B (1994) Functional representation and causal processes. In: Yovits MC (ed.): Advances in Computers. Academic Press, New York.Google Scholar
  72. Chandrasekaran B, Johnson TR (1993) Generic tasks and task structures: history, critique and new directions. In: David JM, Krivine JP, Simmons R (eds.): Second Generation Expert Systems. Springer, New York:232–272.Google Scholar
  73. Chandrasekaran B, Josephson JR (2000) Function in device representation. J. Eng. Comput. 16 (3/4):162-177.CrossRefGoogle Scholar
  74. Chandrasekaran B, Josephson JR, Benjamins VR (1999) What are ontologies, and why do we need them? IEEE Intell. Syst. 14 (1):20–26.CrossRefGoogle Scholar
  75. Chen PP (1976) The entity-relationship model – toward a unified view of data. ACM Transactions on Database Systems 1 (1):9–36.CrossRefGoogle Scholar
  76. Chertov AG (1997) Units of physical measure. In: Grigoriev IS, Meilikhov EZ (eds.): Handbook of Physical Quantities, CRC Press.Google Scholar
  77. Clark J, ed. (1999) XSL Transformations (XSLT), Version 1.0. W3C Recommendation, 16 November 1999. Online available at http://www.w3.org/TR/xslt. Accessed May 2008
  78. Clark P, Thompson J, Porter B (2000) Knowledge patterns. In: Cohn A, Giunchiglia F, Selman B (eds.): KR-2000: Proceedings of the Conference on Knowledge Representation and Reasoning. Morgan Kaufmann:591–600.Google Scholar
  79. Cohen WW, Borgida A, Hirsh H (1992) Computing least common subsumers in description logics. In: Swartout W (ed.): Proceedings of the 10th National Conference on Artificial Intelligence. MIT Press:754–760.Google Scholar
  80. Connolly D, van Harmelen F, Horrocks I, McGuinness DL, Patel-Schneider PF, Stein LA (2001) DAML+OIL reference description. W3C Note, 18 December 2001. Online available at http://www.w3.org/TR/daml+oilreference. Accessed January 2008.
  81. Crubézy M, O’Connor M, Buckeridge DL, Pincus Z, Musen MA (2005) Ontology-centered syndromic surveillance for bioterrorism. IEEE Intell. Syst. 20 (5):26–35.CrossRefGoogle Scholar
  82. Daintith J (2005) Oxford Dictionary of Physics. Oxford University Press.Google Scholar
  83. Davenport TH (1993) Process Innovation. Harvard Business School, Boston.Google Scholar
  84. Davis R, Shrobe H, Szolovits P (1993) What is a knowledge representation? AI Mag. 14 (1):17–33.Google Scholar
  85. Dassault Systemes (2008) Industry PLM Solutions. Online available at http://www.3ds.com/solutions/. Accessed December 2008.
  86. De Giacomo G, Franconi E, Cuenca Grau B, Haarslev V, Kaplunova A, Kaya A, Lembo D, Lutz C, Milicic M, Möller R, Sattler U, Sertkaya B, Suntisrivaraporn B, Turhan AY, Wandelt S, Wessel M (2007) Analysis of Test-Results on Individual Test Ontologies. TONES project deliverable (TONES-D23). Online available at http://www.tones-project.org. Accessed June 2008.
  87. Dietz A (1995) Yet another representation of molecular structure? J. Chem. Inf. Comput. Sci. 35 (5):787-802.Google Scholar
  88. Doerr M, Hunter J, Lagoze C (2003) Towards a core ontology for information integration. J. Digit. Inf. 4 (1), Article No. 169.Google Scholar
  89. Douglas JM (1988) Conceptual Design of Chemical Processes. McGraw-Hill, New York.Google Scholar
  90. Drewitz W, Szczepanski R, Pinõl D, Banks P, Halloran M, van Baten J, Pons M, eds. (2006) Thermodynamic and physical properties, version 1.1. CAPE-OPEN Interface Standards Specification. Online available at http://www.colan.org/index.html. Accessed March 2007.
  91. EBI – European Bioinformatics Institute (2008) Chemical Entities of Biological Interest (ChEBI). Online available at http://www.ebi.ac.uk/chebi/. Accessed June 2008.
  92. EClass (2009) eCl@ss. Online available at: http://www.eclass.de.
  93. Eclipse (2009) Eclipse download. Online available at http://www.eclipse.org/ Accessed April 2009.
  94. Eggersmann M, Hackenberg J, Marquardt W, Cameron I (2002) Applications of modeling: A case study from process design. In: Braunschweig B, Gani R (eds.): Software Architecture and Tools for Computer Aided Process Engineering. Elsevier Science:335–372.Google Scholar
  95. Eggersmann M, Bayer B, Jarke M, Marquardt W, Schneider R (2003a) Prozessund Produktmodelle für die Verfahrenstechnik. In: Westfechtel B, Nagl M (eds.): Modelle, Werkzeuge und Infrastrukturen zur Unterstützung von Entwicklungsprozessen. Wiley-VCH, Weinheim:75–90.Google Scholar
  96. Eggersmann M, Gonnet S, Henning GP, Krobb C, Leone HP, Marquardt W (2003b): Modeling and understanding different types of process design activities. Latin Am. Appl. Res. 33:167-175Google Scholar
  97. Eggersmann M, Hai R, Kausch B, Luczak H, Marquardt W, Schlick C, Schneider N, Schneider R, Theißen M (2008) Work process models. In: Nagl M, Marquardt W (eds.): Collaborative and Distributed Chemical Engineering. Springer, Berlin:126–152.Google Scholar
  98. EMC2 (2008) Documentum Family. Online available at http://software.emc.com/products/product_family/documentum_family.htm. Accessed May 2008.
  99. Encyclopedia Britannica (2009) Unit process. Online available at: http://www.britannica.com/EBchecked/topic/615307/unit-process.
  100. Fedai M, Drath R (2004) CAEX – ein neutrales Datenaustauschformat für Anlagendaten – Teil 1. Autom. Tech. Prax. 46 (2):52–56Google Scholar
  101. Fensel D, Schönegge A, Groenboom R, Wielinga BJ (1996) Specification and verification of knowledge-based systems. In: Gaines BR, Musen MA (eds.): Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-Based Systems Workshop. SRDG Publications.Google Scholar
  102. Ferstl OK, Sinz EJ (2001) Grundlagen der Wirtschaftsinformatik, Bd. 1. Oldenbourg, München.Google Scholar
  103. Föllinger O (1982) Einführung in die Zustandsbeschreibung dynamischer Systeme. Oldenbourg, München.Google Scholar
  104. Föllinger O (1992) Regelungstechnik – Einführung in die Methoden und ihre Anwendung. Hüthig, Heidelberg.Google Scholar
  105. Fowler M (1997) UML Distilled – Applying the Standard Object Modeling Language. Addison-Wesley.Google Scholar
  106. Fox MS, Grüninger M (1998) Enterprise modeling. AI Mag. 19 (3):109–121.Google Scholar
  107. Fridman-Noy N, Hafner CD (1997) The state of the art in ontology design – a survey and comparative review. AI Mag. 18 (3):53–74.Google Scholar
  108. Froment GF, Bischoff KB (1990) Chemical Reactor Analysis and Design. John Wiley, New York.Google Scholar
  109. Früh KF (ed.) (2000) Handbuch der Prozessautomatisierung. Oldenbourg, München.Google Scholar
  110. Fuchino T, Takamura T, Batres R (2005) Development of engineering ontology on the basis of IDEF0 activity model. In: Khosla R, Howlett RJ, Jain LC (eds.): Knowledge-Based Intelligent Information and Engineering Systems, 9th International Conference (KES 2005). Springer, Berlin:162–168Google Scholar
  111. Gallaher MP, O’Connor AC, Dettbarn Jr JL, Gilday LT (2004) Cost Analysis of Inadequate Interoperability in the U.S. Capital Facilities Industry. Technical Report (NIST GCR 04-867), National Institute of Standards and Technology, Gaithersburg, Maryland.Google Scholar
  112. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley.Google Scholar
  113. Gao JX, Aziz H, Maropoulos PG, Cheung WM (2003) Application of product data management technologies for enterprise integration. Int. J. Computer Integr. Manuf. 16 (7-8):491–500.CrossRefGoogle Scholar
  114. Gear CW, Petzold L (1984) ODE methods for the solution of differential/algebraic systems. Trans. Society Computer Simulation 1:27–31.Google Scholar
  115. Genesereth MR, Fikes RE et al. (1992) Knowledge Interchange Format, Version 3.0 Reference Manual. Technical Report (Logic-92-1), Stanford University Logic Group. Online available at http://citeseer.ist.psu.edu/genesereth92knowledge.html. Accessed October 2007.
  116. Gensym (2008) Business Rule Management, Business Rules, BPM Software. Online available at http://www.gensym.com/. Accessed March 2008.
  117. GeoNames (2007) GeoNames Ontology. Online available at http://www.geonames.org/ontology/. Accessed October 2007.
  118. Gigch JP (1991) System Design Modeling and Metamodeling. Springer, New York.Google Scholar
  119. Gilles ED (1998) Network theory for chemical processes. Chem. Eng. Technol. 21 (8):121–132.CrossRefGoogle Scholar
  120. GNU (2006) CVS – Open Source Version Control. Online available at http://www.nongnu.org/cvs/. Accessed October 2007.
  121. GNU Project (2007) The GNU General Public Licence. Online available at http://www.gnu.org/copyleft/gpl.html. Accessed December 2007.
  122. GO Consortium (2007) An Introduction to the Gene Ontology. Online available at http://www.geneontology.org/GO.doc.shtml. Accessed October 2007.
  123. Gold V, Loening KL, McNaught AD, Sehmi P (1987) Compendium of Chemical Terminology. Blackwell, Oxford.Google Scholar
  124. Gómez-Pérez A, Fernández-López M, Corcho O (2004) Ontological Engineering. Springer, Berlin.Google Scholar
  125. Graßmuck J, Houben KW, Zollinger RM (1994) DIN-Normen in der Verfahrenstechnik. Teubner, Stuttgart.Google Scholar
  126. Green DW, Perry RH (deceased) (1997) Perry’s Chemical Engineers’ Handbook. 7th Edition. McGraw-Hill, New York.Google Scholar
  127. Gruber TR (1993) A Translation Approach to Portable Ontology Specifications. Knowl. Acquis. 5 (2):199–220.CrossRefGoogle Scholar
  128. Gruber TR (1995) Toward principles for the design of ontologies used for knowledge sharing. Int. J. Hum Comput Stud. 43 (5/6):907–928.CrossRefGoogle Scholar
  129. Gruber TR, Olsen GR (1994) An Ontology for Engineering Mathematics. In: Doyle J, Torasso P, Sandewall E (eds.): Proceedings of Fourth International Conference on Principles of Knowledge Representation and Reasoning. Morgan Kaufmann. Online available at http://www-ksl.stanford.edu/knowledge-sharing/papers/engmath.html. Accessed September 2007.
  130. Grüninger M, Fox MS (1995) Methodology for the design and evaluation of ontologies. In: Skuce D (ed.): Proceedings of the IJCAI’95 Workshop on Basic Ontological Issues in Knowledge Sharing.Google Scholar
  131. Guarino N (1997a) Understanding, building, and using ontologies: A commentary to “Using Explicit Ontologies in KBS Development”, by van Heijst, Schreiber, and Wielinga. Int. J. Hum Comput Stud. 46 (2/3):293–310.Google Scholar
  132. Guarino N (1997b) Semantic matching: formal ontological distinctions for information organization, extraction, and integration. In: Pazienza MT (ed.): Information Extraction: A Multidisciplinary Approach to an Emerging Information Technology. Springer, Berlin:139–170.Google Scholar
  133. Guarino N (1998) Formal ontology and information systems. In: Guarino N (ed.): Formal Ontology in Information Systems. IOS Press, Amsterdam:3–15.Google Scholar
  134. Guarino N, Boldrin L (1993) Ontological requirements for knowledge sharing. In: Skuce D (ed.): Proceedings of the IJCAI’95 Workshop on Basic Ontological Issues in Knowledge Sharing.Google Scholar
  135. Guarino N, Giaretta P (1995) Ontologies and knowledge bases: towards a terminological clarification. In: Mars N (ed.): Towards Very Large Knowledge Bases: Knowledge Building and Knowledge Sharing. IOS Press, Amsterdam: 25–32.Google Scholar
  136. Guthrie K (1969) Data and techniques for preliminary capital cost estimation, Chem. Eng. (New York) 24 (3):114-142.Google Scholar
  137. Gutsche B (1986) Phase equilibria in oleochemical industry – application of continuous thermodynamics. Fluid Phase Equilib. 30:65-70.CrossRefGoogle Scholar
  138. Haarslev V, Möller R, van der Straeten R, Wessel M (2004) Extended query facilities for racer and an application to software-engineering problems. In: Proceedings of the 2004 International Workshop on Description Logics (DL-2004):148–157.Google Scholar
  139. Haase R (1990) Thermodynamics of Irreversible Processes, Dover Publications, New York.Google Scholar
  140. Hackenberg J (2006) Computer Support for Theory-Based Modeling of Process Systems. Fortschritt-Berichte VDI, Reihe 3, Nr. 860, VDI-Verlag, Düsseldorf.Google Scholar
  141. Hai R, Theiβen M, Marquardt W (2009) An integrated ontology for operational processes. In: Jezowski J, Thullie J (eds.): Proceedings of the 19th European Symposium on Computer-Aided Process Engineering. Elsevier: 1087–1091.Google Scholar
  142. Hairer E, Wanner G (1996) Solving Ordinary Differential Equations II – Stiff and Differential-Algebraic Problems, Springer, Berlin.Google Scholar
  143. Halevy AY (2001) Answering queries using views: a survey. VLDB J. 10 (4):270–294.CrossRefGoogle Scholar
  144. Hammer M, Champy J A (1993) Reengineering the Corporation: a Manifesto for Business Revolution. HarperCollins, NewYork.Google Scholar
  145. Hariu OH, Sage RC (1969) Crude split figured by computer. Hydrocarbon Process., Int. Ed. 48 (4):143-148.Google Scholar
  146. Hawley K (2004) Temporal Parts. In: Zalta EN (ed.): The Stanford Encyclopedia of Philosophy (Winter 2004 Edition). Online available at http://plato.stanford.edu/archives/win2004/entries/temporal-parts/. Accessed October 2007.
  147. Heflin J, Hendler J (2000) Dynamic ontologies on the web. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-2000). AAAI Press, Menlo Park, CA:443–449.Google Scholar
  148. Hendler J (2007) Where are all the intelligent agents? IEEE Intell. Syst. 22 (3):2-3.CrossRefGoogle Scholar
  149. Hodges W (1983) Elementary predicate logic. In: Gabbay DM, Guenthner F (eds.): Handbook of Philosophical Logic – Vol. I: Elements of Classical Logic. Reidel, Dordrecht:1–131.Google Scholar
  150. Hoekstra R, Breuker J, Di Bello M, Boer A (2007) The LKIF core ontology of basic legal concepts. In: Casanovas P, Biasiotti MA, Francesconi E, Sagri MT (eds.): Proceedings of the 2 nd Workshop on Legal Ontologies and Artificial Intelligence Techniques. CEUR Workshop Proceedings:43-63.Google Scholar
  151. Hofweber T (2005) Logic and ontology. In: Zalta EN (ed.): The Stanford Encyclopedia of Philosophy (Winter 2005 Edition). Online available at http://plato.stanford.edu/achives/win2005/entries/logic-ontology/. Accessed January 2007.
  152. Horrocks I (1998) Using an expressive description logic: FaCT or fiction? In: Cohn AG, Schubert L, Shapiro SC (eds.): Principles of Knowledge Representation and Reasoning: Proceedings of the Sixth International Conference (KR’98). Morgan Kaufmann, San Francisco:636–647.Google Scholar
  153. Horrocks I, Patel-Schneider P (2004) Reducing OWL entailment to description logic satisfiability. J. Web Sem. 1 (5):345–357.Google Scholar
  154. Horrocks I, Patel-Schneider P, Boley H, Tabet S, Grosof B, Dean M (2004) SWRL: A Semantic Web Rule Language Combining OWL and RuleML. W3C Member Submission 21 May 2004. Online available at http://www.w3.org/Submission/SWRL/. Accessed December 2007.
  155. Hubert H, van Houten F, eds. (1999) Integration of Process Knowledge into Design Support Systems. SpringerGoogle Scholar
  156. HP Labs (2007) HP Labs Semantic Web Research. Available at www.hpl.hp.com/semweb/. Accessed January 2008.
  157. IEEE (1990) IEEE Standard Glossary of Software Engineering Terminology. IEEE Standard 610.12-1990, Institute for Electrical and Electronics Engineering, New York.Google Scholar
  158. IEEE (2000) IEEE Recommended Practice for Architectural Description for Software-Intensive Systems. IEEE Standard 1471-2000, Institute for Electrical and Electronics Engineering, New York.Google Scholar
  159. Imai M (1997) Gemba Kaizen: A Commonsense, Low-Cost Approach to Management. McGraw-Hill, New York.Google Scholar
  160. Incropera FP, De Witt DP (1990) Fundamentals of Heat and Mass Transfer (3rd ed.). John Wiley, New York.Google Scholar
  161. Innotec (2008) Innotec – Product Over-view. Online available at http://www.innotec.com/produktuebersicht.html?&L=1. Accessed March 2008.
  162. Intergraph (2008). Intergraph: SmartPlant foundation. Online available at http://www.intergraph.com/products/ppm/smartplant/default.aspx. Accessed March 2008.
  163. Ion P, Miner R, eds. (1999) Mathematical Markup Language (MathML) 1.01 Specification. W3C Recommendation, revision of 7 July 1999. Online available at http://www.w3.org/TR/REC-MathML/. Accessed April 2007.
  164. ISO (1994) Industrial automation systems and integration – Product data representation and exchange – Part 11: Description methods: The EXPRESS language reference manual. International Standard ISO 10303-11:1994, International Organization for Standardization, Geneva, Switzerland.Google Scholar
  165. ISO (2003) Industrial automation systems and integration – Integration of lifecycle data for process plants including oil and gas production facilities – Part 2: Data model. International Standard ISO 15926-2:2003, International Organization for Standardization, Geneva, Switzerland.Google Scholar
  166. ISO (2004) Industrial automation systems and integration – Integration of lifecycle data for process plants including oil and gas production facilities – Part 1: Overview and fundamental principles. International Standard ISO 15926-1:2004, International Organization for Standardization, Geneva, Switzerland.Google Scholar
  167. ISO (2005) Industrial automation systems and integration – Integration of lifecycle data for process plants including oil and gas production facilities – Part 7: Implementation methods for data exchange and integration. International Standard under development ISO/CD TS 15926-7, International Organization for Standardization, Geneva, Switzerland.Google Scholar
  168. ISO (2006) Industrial automation systems and integration – Integration of lifecycle data for process plants including oil and gas production facilities – Part 3: Ontology for geometry and topology. International Standard under development ISO/NP TS 15926-3, International Organization for Standardization, Geneva, Switzerland.Google Scholar
  169. ISO (2007) Industrial automation systems and integration – Integration of lifecycle data for process plants including oil and gas production facilities – Part 4: Initial reference data. International Standard ISO/TS 15926-4:2007, International Organization for Standardization, Geneva, Switzerland.Google Scholar
  170. ISO 10303, Part 231 (1998) Process Engineering Data: Process Design and Process Specifications of Major Equipment. ISO TC 184/SC4/WG3 N740.Google Scholar
  171. ISO/IEC 12207 (2008) Systems and Software Engineering – Software life cycle processes. Google Scholar
  172. Jacobson I, Booch G, Rumbaugh J (2003) The Unified Software Development Process: UML. Addison-Wesley.Google Scholar
  173. Jarke M, Marquardt W (1995) Design and Evaluation of Computer-Aided Process Modeling Tools. In: Davis J, Stephanopoulos G, Venkatasubramanian V (eds): Intelligent Systems in Process Engineering, AlChE Symp. Ser., 312 (92):97-109.Google Scholar
  174. Jarke M, Gallersdörfer R, Jeusfeld MA, Staudt M, Eherer S (1995) ConceptBase – a deductive object base for meta data management. J. Intell. Inf. Syst. 4 (2):167–192.CrossRefGoogle Scholar
  175. Jarke M, List T, Weidenhaupt K (1999) A process-integrated conceptual design environment for chemical engineering. In: Proceedings of the 18th International Conference on Conceptual Modeling. Springer, Berlin:520–537.Google Scholar
  176. Jarke M, List T, Köller J (2000) The challenge of process data warehousing. In: Proceedings of the 26th International Conference on Very Large Databases. Morgan Kaufmann:473–483.Google Scholar
  177. Jarke M, Lenzerini M, Vassiliou Y, Vassiliadis P (2003) Fundamentals of Data Warehouses. Springer, Berlin.Google Scholar
  178. Jarrar M, Meersman R (2002) Scalability and knowledge reusability in ontology modeling. In: Proceedings of the International conference on Infrastructure for e-Business, e-Education, e-Science, and e-Medicine SSGRR2002.Google Scholar
  179. Jensen AK (1998) Generation of problem specific simulation models within an integrated computer aided system. PhD Thesis, Department of Chemical Engineering, Technical University of Denmark.Google Scholar
  180. Karnopp DC, Margolis DL, Rosenberg RC (1990) System Dynamics: A Unified Approach. John Wiley, New York.Google Scholar
  181. Kifer M, Lausen G, Wu J (1995) Logical foundations of object-oriented and frame-based languages. JACM 42 (4):741–843.CrossRefGoogle Scholar
  182. Killich S, Luczak H, Schlick C, Weißenbach M, Wiedenmaier S, Ziegler J (1999) Task modelling for cooperative work. Behaviour and Information Technology 18 (5):325-338.CrossRefGoogle Scholar
  183. Kim Y, Kang S, Lee S, Yoo S (2001) A distributed, open, intelligent product data management system. Int. J. Computer Integr. Manuf. 14:224–235.CrossRefGoogle Scholar
  184. Kitamura Y, Mizoguchi R (1999) Meta-functions of artifacts. In: Price C (ed.): Proceedings of the 13 th International Workshop on Qualitative Reasoning. University of Aberystwyth:136–145.Google Scholar
  185. Kitamura Y, Mizoguchi R (2003) Ontology-based description of functional design knowledge and its use in a functional way server. Expert Syst. Appl. 24 (2):153–166.CrossRefGoogle Scholar
  186. Kitamura Y, Koji Y, Mizoguchi R (2006) An ontological model of device function: industrial deployment and lessons learned. Applied Ontology 1 (3-4):237–262.Google Scholar
  187. Klein M (2002) Interpreting XML documents via an RDF schema ontology. In: Proceedings of the 13 th International Workshop on Database and Expert Systems Applications:889–893.Google Scholar
  188. Klinker G, Bhola C, Dallemagne G, Marques D, McDermott J (1991) Usable and reusable programming constructs. Knowl. Acquis. 3 (2):117–135.CrossRefGoogle Scholar
  189. Klir GJ (1985) Architecture of Systems Problem Solving. Plenum Press, New York.Google Scholar
  190. Konda S, Monarch I, Sargent P, Subrahmanian E (1992) Shared memory in design: A unifying theme for research and practice. Res. Eng. Des. 4:23–42.CrossRefGoogle Scholar
  191. Kopena J, Regli WC (2003) Functional modeling of engineering designs for the semantic web. IEEE Data Eng. Bull. 26 (4):55–61.Google Scholar
  192. Kozaki K, Kitamura Y, Ikeda M, Mizoguchi R (2000) Development of an environment for building ontologies which is based on a fundamental consideration of “relationship” and “role”. In: Compton P, Hoffmann A (eds.): Proceedings of the 6th Pacific Knowledge Acquisition Workshop. University of New South Wales:205–221.Google Scholar
  193. Krishna R, Taylor R (1993) Multicomponent mass transfer: theory and applications. In: Cheremisino NP (ed): Handbook of Heat and Mass Transfer, Gulf Publishing Company, 2:259-432.Google Scholar
  194. Krobb C, Lohmann B, Marquardt W (1998) The Chemical Engineering Data Model VeDa. Part 6: The Process of Model Development. Technical Report (LPT-1998-06), Lehrstuhl für Prozesstechnik, RWTH Aachen University.Google Scholar
  195. Kumar A, Gupta R (1998) Fundamentals of Polymers. McGraw-Hill, New York.Google Scholar
  196. Lang HJ (1947) Engineering Approach to Preliminary Cost Estimates, Chem. Eng. (New York):130-133.Google Scholar
  197. Lassila O, McGuinness D (2001) The Role of Frame-Based Representation on the Semantic Web. Technical Report (KSL-01-02), Knowledge Systems Laboratory, Stanford University. Online available at http://www-ksl.stanford.edu/KSL_Abstracts/KSL-01-02.html. Accessed October 2007.
  198. Lauber J (1996) Methode zur funktionalen Beschreibung und Analyse von Produktionsprozessen als Basis zur Realisierung leittechnischer Lösungen. Dissertation, Lehrstuhl für Prozessleittechnik, RWTH Aachen University.Google Scholar
  199. Lenat D, Guha RV (1990) Building Large Knowledge-Based Systems: Representation and Inference in the Cyc Project. Addison Wesley.Google Scholar
  200. Levenspiel O (1999). Chemical Reaction Engineering. John Wiley & Sons, Inc., New York.Google Scholar
  201. Linninger A (2000) Towards computer-aided model generation. In: Proceedings of the JSPS International Workshop on Safety-Assured Operation and Concurrent Engineering. Yokohama, Japan:C35–C49.Google Scholar
  202. Linstrom PJ, Mallard WG, eds. (2005) NIST Chemistry WebBook. NIST Standard Reference Database Number 69, June 2005, National Institute of Standards and Technology, Gaithersburg, MD. Online available at http://webbook.nist.gov.
  203. Little EG, Rogova GL (2005) Ontology Meta-Model for building a situational picture of catastrophic events. In: 8th International Conference on Information Fusion 2005, DOI: 10.1109/ICIF. 2005.1591935.Google Scholar
  204. Lloyd CM, Halstead MDB, Nielsen PF (2004) CellML: its future, present and past. Progress in Biophysics and Molecular Biology 85 (2-3):433-450.CrossRefGoogle Scholar
  205. Lloyd JW (1987) Foundations of Logic Programming, 2nd edition. Springer, Berlin.Google Scholar
  206. Lohmann B, Marquardt W (1998) Entwicklungsprozesse für den konzeptionellen Entwurf. In: Nagl M, Westfechtel B (eds.): Integration von Entwicklungssystemen in Ingenieuranwendungen. Springer, Berlin:253-264.Google Scholar
  207. Lu ML, Batres R, Li HS, Naka Y (1997) A G2 based MDOOM testbed for concurrent process engineering. Comput. Chem. Eng. 21:11–16.CrossRefGoogle Scholar
  208. Maier A, Schnurr HP, Sure Y (2003) Ontology-based information integration in the automotive industry. In: Proceedings of the 2 nd International Semantic Web Conference (ISWC2003), Florida:897-912.Google Scholar
  209. Mangold M, Angeles-Palacios O, Ginkel M, Kremling A, Waschler R, Kienle A, Gilles ED (2005) Computer-aided modeling of chemical and biological systems: methods, tools and applications. Ind. Eng. Chem. Res. 44:2579–2591.CrossRefGoogle Scholar
  210. Maropoulos PG (2003) Digital enterprise technology – defining perspectives and research priorities. Int. J. Computer Integr. Manuf. 16 (7/8):467–478.Google Scholar
  211. Marquardt W (1992a) An object-oriented representation of structured process models. Comput. Chem. Eng. 16:329–336.Google Scholar
  212. Marquardt W (1992b) Rechnergestützte Erstellung verfahrenstechnischer Prozessmodelle. Chem. Ing. Tech. 64:25-40Google Scholar
  213. Marquardt W (1994a) Trends in Computer-Aided Process Modeling. 5th International Symposium on Process Systems Engineering, PSE’94, Proceedings PSE’94:1-24Google Scholar
  214. Marquardt W (1994b) Computer-aided generation of chemical engineering process models. Int. Chem. Eng. 34:28–46.Google Scholar
  215. Marquardt W (1995) Towards a Process Modeling Methodology. In: Berber, R: Methods of Model-Based Control. NATO-ASI E, Applied Sciences, 293, Kluwer, Dordrecht:3-41.Google Scholar
  216. Marquardt W (1996) Trends in computer-aided process modeling. Comput. Chem. Eng. 20 (6/7):591–609.CrossRefGoogle Scholar
  217. Marquardt W, Nagl M (2004) Workflow and information centered support of design processes – the IMPROVE perspective. Comput. Chem. Eng. 29 (1):65–82.CrossRefGoogle Scholar
  218. Marquardt W, Gerstlauer A, Gilles ED (1993) Modeling and Representation of Complex Objects: A Chemical Engineering Perspective, 6th Int. Conf. on Industrial and Engineering Applications to Artificial Intelligence and Expert Systems, Proceedings:219-228.Google Scholar
  219. Marquardt W, von Wedel L, Bayer B (2000) Perspectives on lifecycle process modeling. In: Malone MF, Trainham JA, Carnahan B (eds.): Foundations of Computer–Aided Process Design. AIChE:192–214.Google Scholar
  220. Martinson WS, Barton PI (2000) A differentiation index for partial differentialalgebraic equations. SIAM J. Sci. Comput. 21:2295–2315.CrossRefGoogle Scholar
  221. Matthes F (1959) Zur Systematik der chemischen Technologie – Teil 2, Chem. Tech. (Leipzig):536-543.Google Scholar
  222. McCabe WL, Smith JC, Harriott P (2004) Unit Operations in Chemical Engineering. 7th Edition, McGraw-Hill, New York.Google Scholar
  223. McGuinness DL (2002) Ontologies come of age. In: Fensel D, Hendler J, Lieberman H, Wahlster W (eds.): Spinning the Semantic Web: Bringing the World Wide Web to Its Full Potential. MIT Press:171–194.Google Scholar
  224. McLaughlin B, Bennett K (2005) Supervenience. Online available at http://plato.stanford.edu/entries/supervenience/. Accessed December 2006.
  225. McMahon C, Lowe A, Culley SJ (2004) Knowledge management in engineering design, personalisation and codification. J. Eng. Des. 15 (4):307–325.CrossRefGoogle Scholar
  226. McNaught AD, Wilkinson A, eds. (1997) Compendium of Chemical Terminology, 2nd Edition. Blackwell Science, Oxford, UK. Electronic version online available at http://goldbook.iupac.org/.
  227. Mesihovic S, Malmqvist J, Pikosz P (2004) Product data management systembased support for engineering project management. J. Eng. Des. 15 (4):389–403.CrossRefGoogle Scholar
  228. Miatidis M, Jarke M (2005) Integrating workflow extensions into a processintegrated environment for chemical engineering. In: Proceedings of the 7th International Conference on Enterprise Information Systems:255–260.Google Scholar
  229. Miatidis M, Jarke M, Weidenhaupt K (2008) Using developers’ experience in cooperative design processes. In: Nagl M, Marquardt W (eds.): Collaborative and Distributed Chemical Engineering. Springer, Berlin:185–223.Google Scholar
  230. Miller DC, Josephson JR, Elsass MJ, Davis JF, Chandrasekaran B (1997) Sharable Engineering Databases for Intelligent System Applications. Comput. Chem. Eng. 21:77-82.Google Scholar
  231. Minsky M (1975) A framework for representing knowledge. In: Winston PH (ed.): The Psychology of Computer Vision. McGraw-Hill, New York.Google Scholar
  232. Mizoguchi R (2001) Ontological engineering: foundation of the next generation knowledge processing. In: Zhong N, Yao Y, Liu J, Ohsuga S (eds.): Web Intelligence: Research and Development. Springer, Berlin:44–57.CrossRefGoogle Scholar
  233. Mizoguchi R, Vanwelkenhuysen J, Ikeda M (1995) Task ontologies for reuse of problem solving knowledge. In: Mars N (ed.): Towards Very Large Knowledge Bases: Knowledge Building and Knowledge Sharing. IOS Press, Amsterdam:46–57.Google Scholar
  234. Mizoguchi R, Kozaki K, Sano T, Kitamura Y (2000) Construction and deployment of a plant ontology. In: Dieng R, Corby O (eds.): Proceedings of the 12th European Workshop on Knowledge Acquisition, Modeling and Management. Springer, Berlin:113–128.Google Scholar
  235. Modell M, Reid RC (1983) Thermodynamics and its Applications. Second ed., Prentice-Hall, Englewood Cliffs.Google Scholar
  236. Molitor R (2000) Unterstützung der Modellierung verfahrenstechnischer Prozesse durch Nicht-Standardinferenzen in Beschreibungslogiken. PhD thesis, Department of Computer Science, RWTH Aachen University.Google Scholar
  237. Morbach J, Marquardt W (2006) Wissenssprache im Anlagenbau – die Erstellung von Branchenleistungsverzeichnissen mit Hilfe von Ontologien. In: Schenk M (ed.): Industriearbeitskreis „Kooperation im Anlagenbau“: Arbeitsbericht 03/04. Fraunhofer IRB Verlag, Stuttgart:1–17.Google Scholar
  238. Morbach J, Marquardt W (2008) Ontology-based integration and management of distributed design data. In: Nagl M, Marquardt W (eds.): Collaborative and Distributed Chemical Engineering. Springer, Berlin:647–655.Google Scholar
  239. Morbach J, Yang A, Marquardt W (2007) OntoCAPE – a large-scale ontology for chemical process engineering. Eng. Appl. Artif. Intell. 20 (2):147–161.CrossRefGoogle Scholar
  240. Morbach J, Theißen M, Hai R, Marquardt W (2008a) An introduction to application domain modeling. In: Nagl M, Marquardt W (eds.): Collaborative and Distributed Chemical Engineering. Springer, Berlin:83–92.Google Scholar
  241. Morbach J Bayer B, Yang A, Marquardt W (2008b) Product data models. In: Nagl M, Marquardt W (eds.): Collaborative and Distributed Chemical Engineering. Springer, Berlin:93–110.Google Scholar
  242. Morbach J, Hai R, Bayer B, Marquardt W (2008c) Document models. In: Nagl M, Marquardt W (eds.): Collaborative and Distributed Chemical Engineering. Springer, Berlin:111–125.Google Scholar
  243. Morbach J, Theißen M, Marquardt W (2008d) Integrated application domain models for chemical engineering. In: Nagl M, Marquardt W (eds.): Collaborative and Distributed Chemical Engineering. Springer, Berlin:169–182.Google Scholar
  244. Morbach J, Wiesner A, Marquardt W (2008e) OntoCAPE 2.0 – a (re)usable ontology for computer-aided process engineering. In: Braunschweig B, Joulia X (eds.): 18th European Symposium on Computer Aided Process Engineering. Elsevier:991–996.Google Scholar
  245. Morbach J, Wiesner A, Marquardt W (2008f) OntoCAPE 2.0 – The Meta Model. Technical Report (LPT-2008-24), Lehrstuhl für Prozesstechnik, RWTH Aachen University. Online available at http://www.avt.rwth-aachen.de/AVT/index.php?id=541&L=0&Nummer=LPT-2008-24.
  246. Morbach J, Bayer B, Wiesner A, Yang A, Marquardt W (2008 g) OntoCAPE 2.0 – The Upper Level. Technical Report (LPT-2008-25), Lehrstuhl für Prozesstechnik, RWTH Aachen University. Online available at http://www.avt.rwth-aachen.de/AVT/index.php?id=541&L=0&Nummer=LPT-2008-25.
  247. Morbach J, Yang A, Wiesner A, Marquardt W (2008 h) OntoCAPE 2.0 – Supporting Concepts. Technical Report (LPT-2008-26), Lehrstuhl für Prozesstechnik, RWTH Aachen University. Online available at http://www.avt.rwth-aachen.de/AVT/index.php?id=541&L=0&Nummer=LPT-2008-26.
  248. Morbach J, Yang A, Marquardt W (2008i) OntoCAPE 2.0 – Materials. Technical Report (LPT-2008-27), Lehrstuhl für Prozesstechnik, RWTH Aachen University. Online available at http://www.avt.rwth-aachen.de/AVT/in-dex.php?id=541&L=0&Nummer=LPT-2008-27.
  249. Morbach J, Yang A, Marquardt W (2008j) OntoCAPE 2.0 – Mathematical Models. Technical Report (LPT-2008-28), Lehrstuhl für Prozesstechnik, RWTH Aachen University. Online available at http://www.avt.rwth-aachen.de/AVT/index.php?id=541&L=0&Nummer=LPT-2008-28.
  250. Morgenstern L, Riecken D (2005) SNAP: An action-based ontology for e-commerce reasoning. In: Proceedings of the 1 st Workshop “FOMI 2005” – Formal Ontologies Meet Industry.Google Scholar
  251. Moss GP, ed. (1996) Basic terminology of stereochemistry. IUPAC Recommendations 1996, Pure Appl. Chem. 68:2193-2222.Google Scholar
  252. Moss GP, Smith PAS, Tavernier D, ed. (1995) Glossary of class names of organic compounds and reactive intermediates based on structure. IUPAC Recommendations 1995, Pure Appl. Chem. 67:51307-1375.Google Scholar
  253. Müller P, ed. (1994) Glossary of terms used in physical organic chemistry. IUPAC Reccomendations 1994, Pure Appl. Chem. 66:1077-1184.Google Scholar
  254. Nagl M, Marquardt W, eds. (2008) Collaborative and Distributed Chemical Engineering: From Understanding to Substantial Design Process Support. Springer, Berlin.Google Scholar
  255. Neches R, Fikes R, Finin T, Gruber T, Patil R, Senator T, Swartout WR (1991) Enabling technology for knowledge sharing. AI Mag. 12 (3):36–56.Google Scholar
  256. Newell A (1982) The knowledge level. Artif. Intel. 18 (1):87–127.CrossRefGoogle Scholar
  257. Niles P (2001) Towards a standard upper ontology. In: Guarino N, Welty C, Smith B (eds.): Proceedings of the 2 nd International Conference on Formal Ontology in Information Systems (FOIS-2001). ACM:2–9.Google Scholar
  258. Nonaka I, Takeuchi H (1995) The Knowledge Creating Company. Oxford University Press, New York.Google Scholar
  259. Noonan H (2006) Identity. In: Zalta EN (ed.): The Stanford Encyclopedia of Philosophy (Winter 2006 Edition). Online available at http://plato.stanford.edu/archives/win2006/entries/identity/. Accessed January 2008.
  260. Noumonon Consulting Limited (2008) Open Access to Intelligent Process Plant Models. Online available at http://www.noumenon.co.uk/. Accessed April 2008.
  261. Noy NF, Klein M (2004) Ontology evolution: not the same as schema evolution. Knowl. Inform. Syst. 6:428–440.CrossRefGoogle Scholar
  262. Noy N, Rector A, eds. (2006) Defining N-ary Relations on the Semantic Web. W3C Working Group Note, 12 April 2006. Online available at http://www.w3.org/TR/swbp-n-aryRelations/. Accessed December 2007.
  263. Oberle D, Volz R, Motik B, Staab S (2004) An extensible ontology software environment. In: Staab S, Studer R (eds.): Handbook on Ontologies. Springer, Berlin:311–333.Google Scholar
  264. Odell JJ (1994) Six different kinds of composition. Journal of Object-Oriented Programming 5(8). Online available at http://www.conradbock.org/compkind.html. Accessed December 2006.
  265. OLS – Ontology Lookup Service (2006) ChEBI Ontology Browser. Online available at http://www.ebi.ac.uk/ontology-lookup/browse.do?ontName=CHEBI. Accessed February 2007.
  266. Ontoprise GmbH (2009) OntoStudio. Online available at http://www.ebi.ac.uk/ontology-lookup/browse.do?ontName=CHEBI. Accessed April 2009.
  267. OWL (2002) OWL representation ontology. Online available at http://www.w3.org/2002/07/owl. Accessed October 2007.
  268. Pâslaru-Bontaş E (2007) Contextual Approach to Ontology Reuse: Methodology, Methods and Tools for the Semantic Web. PhD Thesis, FU Berlin.Google Scholar
  269. Patel-Schneider PF, Horrocks I (2006) OWL 1.1 Web Ontology Language Overview. W3C Member Submission, 19 December 2006. Online available at http://www.w3.org/Submission/owl11-overview/. Accessed October 2007.
  270. Paton NW, Goble CA, Bechhofer S (2000) Knowledge-based information integration systems. Inform. Software Technol. 42 (5):299–312.CrossRefGoogle Scholar
  271. Patzak G (1982) Systemtechnik – Planung komplexer innovativer Systeme. Springer, Berlin.Google Scholar
  272. Perkins JD, Sargent RWH, Vazquez-Roman R, Cho JH (1996) Computer generation of process models. Comput. Chem. Eng. 20 (6):635–639.CrossRefGoogle Scholar
  273. Peters MS, Timmerhaus KD (1991) Plant Design and Economics for Chemical Engineers. McGraw-Hill, New York.Google Scholar
  274. Pinto HS, Gomez-Perez A, Martins JP (1999) Some issues on ontology integration. In: Proceedings of the IJCAI’99 Workshop on Ontologies and Problem Solving Methods.Google Scholar
  275. Pohl K, Weidenhaupt K, Dömges R, Haumer P, Jarke M, Klamma R (1999) PRIME: Towards Process-Integrated Environments. ACM Transactions on Software Engineering and Methodology 8 (4):343–410.CrossRefGoogle Scholar
  276. Polke M, ed. (1994) Process Control Engineering. VCH, Weinheim.Google Scholar
  277. Preisig HA (1995) MODELLER – An object-oriented computer-aided modeling tool. In: Biegler LT, Doherty MF (eds.): Foundations of Computer-Aided Process Design. AIChE:328–331.Google Scholar
  278. Prolist (2009) Prolist. Online available at: http://www.prolist.org.
  279. PTC (2008) Windchill. Online available at http://www.ptc.com/products/wind-chill/. Accessed May 2008.
  280. Pure-Systems (2008) Pure::Variants. Online available at http://www.pure-systems.com. Accessed September 2008.
  281. Racer Systems (2006) What is Racer Pro? Webpage, http://www.racer-systemscom/products/racerpro/index.phtml. Accessed December 2006.
  282. Racer Systems (2007) RacerPro Reference Manual. Online available at http://www.racer-systems.com/products/racerpro/reference-manual-1-9-2-beta.pdf. Accessed June 2008.
  283. Raddatz M, Schlüter M, Brandt SC (2006) Identification and reuse of experience knowledge in continuous production processes. Presented at the 9th IFAC Symposium on Automated Systems Based on Human Skill and Knowledge. Online available at http://www-i5.informatik.rwth-aachen.de/i5new/publications/pubs2006.html. Accessed May 2008.
  284. Ramkrishna D (1985) The status of population balances. Rev. Chem. Eng. 3:49-95.Google Scholar
  285. Rector A (2003) Modularisation of domain ontologies implemented in description logics and related formalisms including OWL. In: Genari J (ed.): Knowledge Capture 2003. ACM Press:121–128.Google Scholar
  286. Rector A, ed. (2005) Representing Specified Values in OWL: “value partitions” and “value sets”. W3C Working Group Note, 17 May 2005. Online available at http://www.w3.org/TR/swbp-specified-values. Accessed November 2007.
  287. Rector A, Welty C, eds. (2005) Simple part-whole relations in OWL Ontologies. W3C Editor’s Draft, 11 August 2005. Online available at http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/. Accessed November 2007.
  288. Rector A, Solomon WD, Nowlan WA, Rush TW (1995) A terminology server for medical language and medical information systems. Methods Inf. Med. 34 (1/2):147–157.Google Scholar
  289. Rector A, Drummond N, Horridge M, Rogers J, Knublauch H, Stevens R, Wang H, Wroe C (2004) OWL pizzas: practical experience of teaching OWLDL: common errors & common patterns. In: Motta E, Shadbolt N, Stutt A, Gibbins N (eds.): Proceedings of the European Conference on Knowledge Acquisition (EKAW). Springer:63–81.Google Scholar
  290. Russ T, Valente A, MacGregor R, Swartout W (1999) Practical experiences in trading off ontology usability and reusability. In: Proceedings of the 12th Banff Knowledge Acquisition for Knowledge-Based Systems Workshop. SRDG Publications.Google Scholar
  291. Sandler SI (1999) Chemical and Engineering Thermodynamics. Third ed., John Wiley, New York.Google Scholar
  292. Sargent RWH (1998) A Functional Approach to Process Synthesis and its Application to Distillation Systems. Comput. Chem. Eng. 22:31-45.CrossRefGoogle Scholar
  293. Schembra M (1991) Daten und Methoden zur Vorkalkulation des Anlagekapitalbedarfs von Chemieanlagen. PhD thesis, Technische Universität Berlin.Google Scholar
  294. Schneider L (2003) How to build a foundational ontology: the object-centered high-level reference ontology OCHRE. In: Günter A, Kruse R, Neumann B (eds.): KI 2003: Advances in Artificial Intelligence. Springer, Berlin: 120–134.Google Scholar
  295. Schuler H, ed. (1999) Prozessführung. Oldenbourg, München.Google Scholar
  296. Schulze-Kremer S (1998) Ontologies for molecular biology. In: Proceedings of the Third Pacific Symposium on Biocomputing. AAAI Press:693–704.Google Scholar
  297. Schummer J (1998) The chemical core of chemistry I: a conceptual approach. HYLE – Int. J. Philosophy Chem. 4(2):129-162.Google Scholar
  298. Seader JD, Henley EJ (1998) Separation Process Principles. John Wiley, New York.Google Scholar
  299. Seipel D, Baumeister J (2004) Declarative methods for the evaluation of ontologies. Künstliche Intelligenz 18 (4):51–57.Google Scholar
  300. Sheremetov L, Batyrshin I, Chi M, Vergara E, Rosales A (2007) Knowledgebased collaborative engineering of pipe networks in the upstream and downstream petroleum industry. In: Shen W, Yang Y, Yong J, Hawryszkiewycz I, Lin Z, Barthes JPA, Maher ML, Hao Q, Tran MH (eds.): Proceedings of the 11th International Conference on Computer Supported Cooperative Work in Design (CSCWD 2007). IEEE:458–463.Google Scholar
  301. Shreve RN (1978) Chemical Process Industries. McGraw-Hill, New York.Google Scholar
  302. Siemens PLM Software (2008) Teamcenter. Online available at http://www.ugs.com/products/teamcenter/. Accessed May 2008.
  303. Simmons B (2007) Mathwords – website. Online available at http://www.mathwords.com/. Accessed October 2007.
  304. Simons P (1987) Parts: A Study in Ontology. Oxford University Press.Google Scholar
  305. Smith B (1996) Mereotopology: a theory of parts and boundaries. Data Know. Eng. 20 (3):287–303.CrossRefGoogle Scholar
  306. Smith B (2006) Against idiosyncrasy in ontology development. In: Bennett B, Fellbaum C (eds.): Formal Ontology in Information Systems. IOS Press:15–26.Google Scholar
  307. Smith EG (1968) The Wiswesser Line-Formula Chemical Notation. McGraw-Hill, New York.Google Scholar
  308. Smith JM (1981) Chemical Engineering Kinetics. 3rd Edition, McGraw-Hill, New York.Google Scholar
  309. Smith JM, Van Ness HC (1975) Introduction to Chemical Engineering Thermodynamics, 3rd Edition. McGraw-Hill, New York.Google Scholar
  310. Smith MK, Welty C, McGuinness DL, eds. (2004) OWL Web Ontology Languages Guide. W3C Recommendation, 10 February 2004. Online available at http://www.w3.org/TR/owl-guide/. Accessed October 2007.
  311. Souza D, Marquardt W (1998a) The Chemical Engineering Data Model VeDa. Part 2: Structural Modeling Objects. Technical Report (LPT-1998-02), Lehrstuhl für Prozesstechnik, RWTH Aachen University.Google Scholar
  312. Souza D, Marquardt W (1998b) The Chemical Engineering Data Model VeDa. Part 3: Geometrical Modeling Objects. Technical Report (LPT-1998-03), Lehrstuhl für Prozesstechnik, RWTH Aachen University.Google Scholar
  313. Sowa JF (1995) Top-level ontological categories. Int. J. Hum Comput Stud. 43 (5/6):669–685.CrossRefGoogle Scholar
  314. Stanford Center for Biomedical Informatics Research (2008) The Protégé Ontology Editor and Knowledge Acquisition System. Online available at http://protege.stanford.edu/. Accessed January 2008.
  315. Stein SE, Heller SR, Tchekhovski D (2003) An open standard for chemical structure representation – the IUPAC Chemical Identifier. In: Proceedings of the 2003 Nimes International Chemical Information Conference:131-143.Google Scholar
  316. Stephanopoulos G, Henning G, Leone H (1990) MODEL.LA. A modeling language for process engineering. I. The formal framework. Comput. Chem. Eng. 14 (8):813–846.CrossRefGoogle Scholar
  317. Stuckenschmidt H, Klein M (2003) Integrity and change in modular ontologies. In: Gottlob G, Walsh T (eds.): IJCAI-03 – Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence. Morgan Kaufmann:900–905.Google Scholar
  318. Studer S, Benjamins VR, Fensel D (1998) Knowledge engineering principles and methods. Data Knowl. Eng. 25 (1/2):161–197.CrossRefGoogle Scholar
  319. Subramanian E, Rachuri S (2008) Guest editorial: special issue on “engineering informatics”. Trans. ASME, J. Computing and Information Science in Engineering. 8:010301-4.CrossRefGoogle Scholar
  320. Szykman S, Sriram RD, Bochenek C, Racz JW, Senfaute J (2000) Design repositories: engineering design’s new knowledge base. IEEE Intell. Syst. 15 (3):48-55.CrossRefGoogle Scholar
  321. Szykman S, Sriram RD, Regli WC (2001) The role of knowledge in next-generation product development systems. J. Comput. Inf. Sci. Eng. 1 (1):3–11.CrossRefGoogle Scholar
  322. TGL 25000 (1974) Chemical Engineering Unit Operations – Classification. Departmental Standard of the German Democratic Republic.Google Scholar
  323. Teijgeler H (2007) InfowebML, OWL-based Information Exchange and Integration based on ISO 15926. Online available at http://www.infowebml.ws/. Accessed November 2007.
  324. Theißen M, Marquardt W (2008) Decision models. In: Nagl M, Marquardt W (eds.): Collaborative and Distributed Chemical Engineering. Springer, Berlin:153–168.Google Scholar
  325. Theißen M, Hai R, Marquardt W (2008a) Computer-assisted work process modeling in chemical engineering. In: Nagl M, Marquardt W (eds.): Collaborative and Distributed Chemical Engineering. Springer, Berlin:656–666.Google Scholar
  326. Theißen M, Hai R, Marquardt W (2008b) Design process modeling in chemical engineering. J. Comput. Inf. Sci. Eng. 8 (1), 011007 (9 pages).Google Scholar
  327. Theißen M, Hai R, Morbach J, Schneider R, Marquardt W (2008c) Scenario-based analysis of industrial work processes. In: Nagl M, Marquardt W (eds.): Collaborative and Distributed Chemical Engineering. Springer, Berlin:433–450.Google Scholar
  328. Theißen M, Hai R, Marquardt W (2009) A framework for work process modeling in the chemical industries. 8th World Congress of Chemical Engineering (WCCE8). Montréal, August 2009.Google Scholar
  329. Thomé B, ed. (1993) Systems Engineering: Principles and Practice of Computer - based Systems Engineering. John Wiley, New York.Google Scholar
  330. Tiller MM (2001) Introduction to Physical Modeling with Modelica. Springer, Berlin.Google Scholar
  331. Tränkle F (2000) Rechnerunterstützte Modellierung verfahrenstechnischer Prozesse für die Simulationsumgebung DIVA. Fortschritt-Berichte VDI 309, Reihe 20, Nr. 309. VDI-Verlag, Düsseldorf.Google Scholar
  332. Tränkle F, Gerstlauer A, Zeitz M, Gilles ED (1997) Application of the modeling and simulation environment PROMOT/DIVA to the modeling of distillation processes. Comput. Chem. Eng. 21:841–846.Google Scholar
  333. Tsarkov D, Horrocks I (2007) FaCT++. Online available at http://owl.man.ac.uk/factplusplus/. Accessed January 2008.
  334. Ullman D (2002) Toward the ideal mechanical engineering design support system. Research in Engineering Design 13 (2), 55– 64.Google Scholar
  335. Unbehauen H (1989) Regelungstechnik I. Vieweg, Braunschweig.Google Scholar
  336. Uschold M, Grüninger M (1996) Ontologies: principles, methods and applications. Knowl. Eng. Rev. 11 (2):93–136.CrossRefGoogle Scholar
  337. Uschold M, King M, Moralee S, Zorgios Y (1998) The enterprise ontology. Knowl. Eng. Rev. 13:31–89.CrossRefGoogle Scholar
  338. Valente A, Breuker J (1996) Towards principled core ontologies. In: Gaines BR, Mussen M (eds.): Proceedings of the 10th Banff Knowledge Acquisition for Knowledge-Based Systems Workshop. SDRG Publications.Google Scholar
  339. Valente A, Russ T, MacGregor R, Swartout W (1999) Building and (re)using an ontology of air campaign planning. IEEE Intell. Syst. 14 (1):27–36.CrossRefGoogle Scholar
  340. van Heijst G, Schreiber AT, Wielinga BJ (1997a) Using explicit ontologies in KBS development. Int. J. Hum Comput Stud. 46 (2/3):183–292.Google Scholar
  341. van Heijst G, Schreiber AT, Wielinga BJ (1997b) Roles are not classes: a reply to Nicola Guarino. Int. J. Hum Comput Stud. 46 (2/3):311–318.Google Scholar
  342. Varzi A (2006) Mereology. In: Zalta EN (ed.): The Stanford Encyclopedia of Philosophy (Winter 2006 Edition). Online available at http://plato.stanford.edu/archives/win2006/entries/mereology/. Accessed January 2007.
  343. Venkatasubramanian V (2009) Drowning in data: informatics and modeling challenges in a data-rich and networked world. AIChE J. 55:2–8.CrossRefGoogle Scholar
  344. Venkatasubramanian V, Zhao C, Joglekar G, Jain A, Hailemariam L, Suresh P, Akkisetty P, Morris K, Reklaitis GV (2006) Ontological informatics infrastructure for pharmaceutical product development and manufacturing. Comput. Chem. Eng. 30 (10/12):1482–1496.CrossRefGoogle Scholar
  345. VIM (1993) International Vocabulary of Basic and General Terms in Metrology (VIM), 2nd Edition. Jointly prepared by ISO, IEC, BIPM, IFCC, IUPAC, IUPAP and OIML. Published by ISO, Geneva, as ISO Guide 99:1993.Google Scholar
  346. Visser PRS, Cui Z (1998) Heterogeneous ontology structures for distributed architectures. In: Proceedings of the ECAI-98 Workshop on Applications of Ontologies and Problem-Solving Methods:112–119.Google Scholar
  347. Visser U, Stuckenschmidt H, Wache H, Vögele T (2000) Enabling technologies for interoperability. In: Visser U, Pundt H (eds.): Workshop: Information Sharing: Methods and Applications at the 14th International Symposium of Computer Science for Environmental Protection:35–46.Google Scholar
  348. Vogt M (1996) Neuere Methoden der Investitionsrechnung in der Chemischen Industrie. Diploma thesis, Technische Universität Berlin.Google Scholar
  349. von Wedel L (2002) CapeML – A Model Exchange Language for Chemical Process Modeling. Technical Report (LPT-2002-16), Lehrstuhl für Prozesstechnik, RWTH Aachen University.Google Scholar
  350. von Wedel L, Marquardt W (1999) The Chemical Engineering Data Model VeDa. Part 5: Material Modeling Objects. Technical Report (LPT-1998-05), Lehrstuhl für Prozesstechnik, RWTH Aachen University.Google Scholar
  351. von Wedel L, Marquardt W (2000) ROME: a repository to support the integration of models over the lifecycle of model-based engineering. In: Pierucci S (ed.): Proceedings of the European Symposium on Computer Aided Process Engineering – ESCAPE 10. Elsevier:535–540.Google Scholar
  352. W3C (2000) The RDFS representation ontology. Web resource. Online available at http://www.w3.org/2000/01/rdf-schema. Accessed June 2008.
  353. W3C (2002) The OWL representation ontology. Online available at http://www.w3.org/2002/07/owl. Accessed October 2007.
  354. W3C (2006) Extensible Markup Language (XML). Online available at http://www.w3.org/XML/. Accessed December 2007.
  355. Wache H, Vögele T, Visser U, Stuckenschmidt H, Schuster G, Neumann H, Hübner S (2001) Ontology-based integration of information – a survey of existing approaches. In: Goméz-Pérez A, Gruninger M, Stuckenschmidt H, Uschold M (eds.): Proceedings of the IJCAI-01 Workshop on Ontologies and Information Sharing. CEUR Workshop Proceedings:108–117.Google Scholar
  356. Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules J. Chem. Inf. Comput. Sci. 28:31-36.Google Scholar
  357. Weisstein E (2007) MathWorld – website. Online available at http://mathworld.wolfram.com/ Accessed October 2007.
  358. Wesselingh JA, Krishna R (2000) Mass transfer in multicomponent mixtures. Delft University Press.Google Scholar
  359. Westerberg AW, Subrahmanian E, Reich Y, Konda S, the n-dim group (1997) Designing the process design process. Comput. Chem. Eng. 21:1–9.CrossRefGoogle Scholar
  360. Wiesner A, Morbach J, Marquardt W (2007) An overview on OntoCAPE and its latest applications. In: Proceedings of the 2007 AIChE Annual Meeting.Google Scholar
  361. Wiesner A, Morbach J, Bayer B, Yang A, Marquardt W (2008a) OntoCAPE 2.0 – Chemical Process System. Technical Report (LPT-2008-29), Lehrstuhl für Prozesstechnik, RWTH Aachen University. Online available at http://www.avt.rwth-aachen.de/AVT/index.php?id=541&L=0&Nummer=LPT-2008-29.
  362. Wiesner A, Morbach J, Marquardt W (2008b) Semantic data integration for process engineering desgin data. In: Proceedings of the 10 th International Conference on Enterprise Information Systems – ICEIS 2008:190-195.Google Scholar
  363. Wilhelm Jr RG (1996) In Search of the Cheshire Cat: The Invisible Automation System Paradox. ISA Transactions 35:321-327.CrossRefGoogle Scholar
  364. Windream GmbH (2008) Managing Documents by Windream. Online available at http://www.windream.com/. Accessed May 2008.
  365. Wüsteneck KD (1963) Zur philosophischen Verallgemeinerung und Bestimmung des Modellbegriffs. Deutsche Zeitschrift für Philosophie 1963:1504 et sqq.Google Scholar
  366. Yang A, Marquardt W (2004) An ontology-based approach to conceptual process modeling. In: Barbarosa-Póvoa A, Matos H (eds.): Proceedings of the European Symposium on Computer Aided Process Engineering – ESCAPE 14. Elsevier:1159–1164.Google Scholar
  367. Yang A, Schlüter M, Bayer B, Krüger J, Haberstroh E, Marquardt W (2003) A concise conceptual model for material data and its applications in process engineering. Comput. Chem. Eng. 27 (4):595–609.CrossRefGoogle Scholar
  368. Yang A, Morbach J, Marquardt W (2004a) From conceptualization to model generation: the roles of ontologies in process modeling. In: Floudas CA, Agrawal R (eds.): Sixth International Conference on Foundations of Computer-Aided Process Design. Omnipress:591–594.Google Scholar
  369. Yang A, Marquardt W, Stalker I, Fraga I, Serra M, Piñol D, Paen D, Roux P, Braunschweig B (2004b) Principles and Informal Specification of OntoCAPE. COGents. Technical Report, COGents Project, Information Society Technologies Program IST-2001-34431.Google Scholar
  370. Yang A, Braunschweig B, Fraga ES, Guessoum Z, Marquardt W, Nadjemi O, Paen D, Piñol D, Roux P, Sama S, Serra M, Stalker I (2008) A multi-agent system to facilitate component-based process modeling and design. Comput. Chem. Eng. 32 (10):2290–2305.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Wolfgang Marquardt
    • 1
    Email author
  • Jan Morbach
    • 1
  • Andreas Wiesner
    • 1
  • Aidong Yang
    • 2
  1. 1.AVT-Process Systems EngineeringRWTH Aachen UniversityAachenGermany
  2. 2.Fac. Engineering & Physical SciencesUniversity of SurreyGuildfordUK

Personalised recommendations