Molecular Dynamics Simulations of Liquid-Crystalline Dendritic Architectures

  • C. Bourgogne
  • I. Bury
  • L. Gehringer
  • A. Zelcer
  • F. Cukiernik
  • E. TerazziEmail author
  • B. DonnioEmail author
  • D. GuillonEmail author
Part of the Lecture Notes in Physics book series (LNP, volume 795)


We report here a few examples of the self-organization behaviour of some novel materials based on liquid-crystalline dendritic architectures. The original design of the molecules imposes the use of all-atomic methods to model correctly every intra- and intermolecular effects. The selected materials are octopus dendrimers with block anisotropic side-arms, segmented amphiphilic block codendrimers, multicore and star-shaped oligomers, and multi-functionalized manganese clusters. The molecular organization in lamellar or columnar phases occurs due to soft/rigid parts self-recognition, hydrogen-bonding networks or from the molecular shape intrinsically.


Liquid Crystal Molecular Dynamics Simulation Dissipative Particle Dynamic Smectic Phasis Smectic Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Astruc, C. R. Acad. Sci. Ser. II Paris 322, 757 (1996).Google Scholar
  2. 2.
    U. Boas and M. H. Heegaard, Chem. Soc. Rev. 33, 43 (2004).CrossRefPubMedGoogle Scholar
  3. 3.
    G. R. Newkome, C. N. Moorefield, and F. Vögtle, Dendrimers and Dendrons: Concepts, Synthesis and Applications (Wiley & Sons, Weinheim, 2001).CrossRefGoogle Scholar
  4. 4.
    J. M. J. Fréchet and D. A. Tomalia (eds.), Dendrimers and Other Dendritic Polymers, Wiley Series in Polymer Science (Wiley& Sons, Chichester, 2001).Google Scholar
  5. 5.
    D. Demus, J. W. Goodby, G. W. Gray, H. -W. Spiess, and V. Vill (eds.) Handbook of Liquid Crystals (Wiley-VCH, Weinheim, 1998).Google Scholar
  6. 6.
    T. Kato, N. Mizoshita, and K. Kishimoto, Angew. Chem. Int. Ed. 45, 38 (2006).CrossRefGoogle Scholar
  7. 7.
    J. W. Goodby, I. M. Saez, S. J. Cowling, V. Görtz, M. Draper, A. W. Hall, S. Sia, G. Cosquer, S.-E. Lee, and E. P. Raynes, Angew. Chem. Int. Ed. 47, 2754 (2008).CrossRefGoogle Scholar
  8. 8.
    S. A. Ponomarenko, N. I. Boiko, and V. P. Shibaev, Polym. Sci. C 43, 1 (2001).Google Scholar
  9. 9.
    D. Guillon and R. Descheneaux, Curr. Opin. Solid State Mater. Sci. 6, 515 (2002).CrossRefGoogle Scholar
  10. 10.
    M. Marcos, A. Omenat, and J.-L. Serrano, C. R. Chim. 6, 947 (2003).CrossRefGoogle Scholar
  11. 11.
    J. Barberá, B. Donnio, L. Gehringer, D. Guillon, M. Marcos, A Omenat, and J.-L. Serrano, J. Mater. Chem. 15, 4093 (2005).CrossRefGoogle Scholar
  12. 12.
    B. Donnio and D. Guillon, Adv. Polym. Sci. 201, 45 (2006).CrossRefGoogle Scholar
  13. 13.
    B. Donnio, S. Buathong, I. Bury, and D. Guillon, Chem. Soc. Rev. 36, 1495 (2007).CrossRefPubMedGoogle Scholar
  14. 14.
    M. Marcos, R. Martin-Rapun, A. Omenat, and J.-L. Serrano, Chem. Soc. Rev. 36, 1889 (2007).CrossRefPubMedGoogle Scholar
  15. 15.
    M. R. Wilson, J. M. Ilnytskyi, L. M. Stimson, and Z. E. Hughes, Computer simulations of liquid crystal polymers and dendrimers. Computer Simulations of Liquid Crystals and Polymers, eds. P. Pasini, C. Zannoni, and S. Zŭmer (Kluwer, The Netherlands, 2004), pp. 57–78.Google Scholar
  16. 16.
    C. M. Care and D. J. Cleaver, Rep. Prog. Phys. 68, 2665 (2005).CrossRefADSGoogle Scholar
  17. 17.
    M. R. Wilson, Int. Rev. Phys. Chem. 24, 421 (2005).CrossRefGoogle Scholar
  18. 18.
    M. R. Wilson, Chem. Soc. Rev. 36, 1881 (2007).CrossRefPubMedGoogle Scholar
  19. 19.
    J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316 (1981).CrossRefADSGoogle Scholar
  20. 20.
    R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997).CrossRefADSGoogle Scholar
  21. 21.
    B. Glettner, F. Liu, X. Zeng, M. Prehm, U. Baumeister, M. Walker, M. A. Bates, P. Boesecke, G. Ungar, and C. Tschierske, Angew. Chem. Int. Ed. 47, 9063 (2008).CrossRefGoogle Scholar
  22. 22.
    C. Zannoni, AIP Conf. Proc. 963, 520 (2007).CrossRefADSGoogle Scholar
  23. 23.
    M. R. Wilson, J. M. Ilnytskyi, and L. M. Stimson, J. Chem. Phys. 119, 3509 (2003).CrossRefADSGoogle Scholar
  24. 24.
    D. L. Cheung, S. J. Clark, and M. R. Wilson, Chem. Phys. Lett. 356, 140 (2002).CrossRefADSGoogle Scholar
  25. 25.
    D. L. Cheung, S. J. Clark, and M. R. Wilson, J. Chem. Phys. 121, 9131 (2004).CrossRefPubMedADSGoogle Scholar
  26. 26.
    J. Pelaez and M. R. Wilson, Phys. Rev. Lett. 97, 267801 (2006).CrossRefPubMedADSGoogle Scholar
  27. 27.
    D. L. Cheung, S. J. Clark, and M. R. Wilson, Phys. Rev. E 65, 051709 (2002).CrossRefADSGoogle Scholar
  28. 28.
    R. Berardi, L. Muccioli, and C. Zannoni, ChemPhysChem 5, 104 (2004).CrossRefPubMedGoogle Scholar
  29. 29.
    I. Cacelli, L. De Gaetani, G. Prampolini, and A. Tani, J. Phys. Chem. B 111, 2130 (2007).CrossRefPubMedGoogle Scholar
  30. 30.
    A. J. McDonald and S. Hanna, J. Chem. Phys. 124, 164906 (2006).CrossRefPubMedADSGoogle Scholar
  31. 31.
    G. Tiberio, L. Muccioli, R. Berardi, and C. Zannoni, ChemPhysChem 10, 125 (2009).CrossRefPubMedGoogle Scholar
  32. 32.
    L. Gehringer, C. Bourgogne, D. Guillon, and B. Donnio, J. Am. Chem. Soc. 126, 3856 (2004).CrossRefPubMedGoogle Scholar
  33. 33.
    J. Barberá, M. Marcos, and J. L. Serrano, Chem. Eur. J. 5, 1834 (1999).CrossRefGoogle Scholar
  34. 34.
    M. Marcos, R. Giménez, J. L. Serrano, B. Donnio, B. Heinrich, and D. Guillon, Chem. Eur. J. 7, 1006 (2001).CrossRefGoogle Scholar
  35. 35.
    B. Donnio, J. Barberá, R. Giménez, D. Guillon, M. Marcos, and J. L. Serrano, Macromoelcules 35, 370 (2002).CrossRefADSGoogle Scholar
  36. 36.
    L. Gehringer, D. Guillon, and B. Donnio, Macromolecules 36, 5593 (2003).CrossRefADSGoogle Scholar
  37. 37.
    J. Malthête, H. T. Nguyen, and C. Destrade, Liq. Cryst. 13, 171 (1993).CrossRefGoogle Scholar
  38. 38.
    H. T. Nguyen, C. Destrade, J. Malthête, Adv. Mater. 9, 375 (1997).CrossRefGoogle Scholar
  39. 39.
    D. Fazio, C. Mongin, B. Donnio, Y. Galerne, D. Guillon, and D. W. Bruce, J. Mater. Chem. 11, 2852 (2001).CrossRefGoogle Scholar
  40. 40.
    V. Percec, C. M. Mitchell, W. D. Cho, S. Uchida, M. Glodde, G. Ungar, X. Zeng, Y. Liu, V. S. K. Balagurusamy, and P. A. Heiney, J. Am. Chem. Soc. 126, 6078 (2004) and references there in.CrossRefPubMedGoogle Scholar
  41. 41.
    C. J. Hawker, K. L. Wooley, and J. M. J. Fréchet, J. Chem. Soc. Perkin Trans. 1 1287 (1993).CrossRefGoogle Scholar
  42. 42.
    D. J. Pesak and J. S. Moore, Tetrahedron 53, 15331 (1997).CrossRefGoogle Scholar
  43. 43.
    E. R. Gillies and J. M. J. Fréchet, J. Am. Chem. Soc. 124, 14137 (2002).CrossRefPubMedGoogle Scholar
  44. 44.
    K. Aoi, K. Itoh, and M. Okada, Macromolecules 30, 8072 (1997).CrossRefADSGoogle Scholar
  45. 45.
    Y. Pan and W. T. Ford, Macromolecules 32, 5468 (1999).CrossRefADSGoogle Scholar
  46. 46.
    Y. Pan and W. T. Ford, Macromolecules 33, 3731 (2000).CrossRefADSGoogle Scholar
  47. 47.
    I. M. Saez and J. W. Goodby, J. Mater. Chem. 15, 26 (2005).CrossRefGoogle Scholar
  48. 48.
    J. Ropponen, S. Nummelin, and K. Rissanen, Org. Lett. 6, 2495 (2004).CrossRefPubMedGoogle Scholar
  49. 49.
    I. Bury, B. Heinrich, C. Bourgogne, D. Guillon, and B. Donnio, Chem. Eur. J. 12, 8396 (2006).CrossRefGoogle Scholar
  50. 50.
    J. M. Seddon, Biochim. Biophys. Acta 1031, 1 (1990).PubMedGoogle Scholar
  51. 51.
    K. Borisch, C. Tschierske, P. Göring, and S. Diele, Chem. Commun. 2711 (1998).Google Scholar
  52. 52.
    S. Fischer, H. Fischer, S. Diele, G. Pelzl, K. Jankowski, R. R. Schmidt, and V. Vill, Liq. Cryst. 17, 855 (1994).CrossRefGoogle Scholar
  53. 53.
    A. N. Cammidge, R. J. Bushby, Handbook of Liquid Crystals, vol. 2B, Chap. VII, (Wiley-VCH, Weinheim, 1998), pp. 693–748.CrossRefGoogle Scholar
  54. 54.
    S. Kumar, Chem. Soc. Rev. 35, 83 (2006).CrossRefPubMedGoogle Scholar
  55. 55.
    K. Kawata, Chem. Rec. 2, 59 (2002).CrossRefPubMedMathSciNetGoogle Scholar
  56. 56.
    A. M. van de Craats and J. M. Warman, Adv. Mater. 13, 130 (2001).CrossRefGoogle Scholar
  57. 57.
    N. Boden, B. Movaghar, Handbook of Liquid Crystals, vol. 2B, Chap. IX (Wiley-VCH, Weinheim, 1998), pp. 781–798.CrossRefGoogle Scholar
  58. 58.
    M. D. Watson, A. Fechtenkötter, and K. Müllen, Chem. Rev. 101, 1267 (2001).CrossRefPubMedGoogle Scholar
  59. 59.
    R. J. Bushby and O. R. Lozman, Curr. Opin. Sol. State Mater. Sci. 6, 569 (2002).CrossRefGoogle Scholar
  60. 60.
    S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Hügele, G. Scalia, R. Judele, E. Kapatsina, S. Sauer, A. Schreivogel, and M. Tosoni, Angew. Chem. Int. Ed. 46, 4832 (2007).CrossRefGoogle Scholar
  61. 61.
    S. Sergeyev, W. Pisula, and Y. H. Geerts, Chem. Soc. Rev. 36, 1902 (2007).CrossRefPubMedGoogle Scholar
  62. 62.
    A. M. van de Craats, J. M. Warman, K. Müllen, Y. Geerts, and J. D. Brand, Adv. Mater. 10, 36 (1998).CrossRefGoogle Scholar
  63. 63.
    R. J. Bushby and O. R. Lozman, Curr. Opin. Colloid. Interface Sci. 7, 343 (2002).CrossRefGoogle Scholar
  64. 64.
    S. Kumar, Liq. Cryst. 32, 1089 (2005).CrossRefGoogle Scholar
  65. 65.
    A. Zelcer, B. Donnio, C. Bourgogne, F. D. Cukiernik, and D. Guillon, Chem. Mater. 19, 1992 (2007).CrossRefGoogle Scholar
  66. 66.
    R. Winpenny (ed.), Single-Molecule Magnets and Related Phenomena, Structure and Bonding, vol. 122 (Springer-Verlag, Berlin, 2006).Google Scholar
  67. 67.
    S. Osa, T. Kido, N. Matsumoto, N. Re, A. Pochaba, and J. Mrozinski, J. Am. Chem. Soc. 126, 420 (2004).CrossRefPubMedGoogle Scholar
  68. 68.
    C. M. Zaleski, E. C. Depperman, J. W. Kampf, M. L. Kirk, and V. L. Pecoraro, Angew. Chem. Int. Ed. 43, 3912 (2004).CrossRefGoogle Scholar
  69. 69.
    R. E. P. Winpenny, J. Chem. Soc., Dalton Trans. 1 (2002).Google Scholar
  70. 70.
    R. Sessoli, Mol. Cryst. Liq. Cryst. 274, 145 (1995).CrossRefGoogle Scholar
  71. 71.
    D. Gatteschi, R. Sessoli, and A. Cornia, Chem. Commun. 725 (2000).Google Scholar
  72. 72.
    D. Gatteschi and R. Sessoli, Angew. Chem. Int. Ed. 42, 268 (2003), and references therein.CrossRefGoogle Scholar
  73. 73.
    O. Roubeau and R. Clérac, Eur. J. Inorg. Chem. 4325 (2008).Google Scholar
  74. 74.
    G. Aromí, S. M. J. Aubin, M. A. Bolcar, G. Christou, H. J. Eppley, K. Folting, D. N. Hendrickson, J. C. Huffman, R. C. Squire, H.-L. Tsai, S. Wang, and M. W. Wemple, Polyhedron 17, 3005 (1998).CrossRefGoogle Scholar
  75. 75.
    E. K. Brechin, Chem. Commun. 5141 (2005).Google Scholar
  76. 76.
    C. J. Milios, S. Piligkos, and E. K. Brechin, Dalton Trans. 1809 (2008).Google Scholar
  77. 77.
    E. Terazzi, C. Bourgogne, R. Welter, J.-L. Gallani, D. Guillon, G. Rogez, and B. Donnio, Angew. Chem. Int. Ed. 47, 490 (2008).CrossRefGoogle Scholar
  78. 78.
    N. Tirelli, F. Cardullo, T. Habicher, U. W. Suter, and F. Diederich, J. Chem. Soc., Perkin Trans. 2, 193 (2000).Google Scholar
  79. 79.
    R. Deschenaux, B. Donnio, and D. Guillon, New J. Chem. 31, 1064 (2007).CrossRefGoogle Scholar
  80. 80.
    T. Cardinaels, K. Driesen, T. N. Parac-Vogt, B. Heinrich, C. Bourgogne, D. Guillon, B. Donnio, and K. Binnemans, Chem. Mater. 17, 6589 (2005).CrossRefGoogle Scholar
  81. 81.
    I. Aprahamian, T. Yasuda, T. Ikeda, S. Saha, W. R. Dichtel, K. Isoda, T. Kato, and J. F. Stoddart, Angew. Chem. Int. Ed. 46, 4675 (2007).CrossRefGoogle Scholar
  82. 82.
    E. D. Baranoff, J. Voignier, T. Y., V. Heitz, J.-P. Sauvage, and T. Kato, Angew. Chem. Int. Ed. 46, 4680 (2007).Google Scholar
  83. 83.
    B. Chen, X. B. Zeng, U. Baumeister, S. Diele, G. Ungar, and C. Tschierske, Angew. Chem. Int. Ed. 43, 4621 (2004).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institut de Physique et Chimie des Matériaux de Strasbourg UMR 7504 (CNRS-UDS)Strasbourg CedexFrance
  2. 2.INQUIMAE, Departamento de Química Inorgánica, Analítica y Química Física Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires Pab. II, Ciudad UniversitariaBuenos AiresArgentina

Personalised recommendations