Swap Bribery

  • Edith Elkind
  • Piotr Faliszewski
  • Arkadii Slinko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5814)

Abstract

In voting theory, bribery is a form of manipulative behavior in which an external actor (the briber) offers to pay the voters to change their votes in order to get her preferred candidate elected. We investigate a model of bribery where the price of each vote depends on the amount of change that the voter is asked to implement. Specifically, in our model the briber can change a voter’s preference list by paying for a sequence of swaps of consecutive candidates. Each swap may have a different price; the price of a bribery is the sum of the prices of all swaps that it involves. We prove complexity results for this model, which we call swap bribery, for a broad class of voting rules, including variants of approval and k-approval, Borda, Copeland, and maximin.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartholdi III, J., Tovey, C., Trick, M.: The computational difficulty of manipulating an election. Social Choice and Welfare 6(3), 227–241 (1989)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Betzler, N., Dorn, B.: Towards a dichotomy of finding possible winners in elections based on scoring rules. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 124–136. Springer, Heidelberg (2009)Google Scholar
  3. 3.
    Brams, S., Sanver, R.: Critical strategies under approval voting: Who gets ruled in and ruled out. Electoral Studies 25(2), 287–305 (2006)CrossRefGoogle Scholar
  4. 4.
    Caragiannis, I., Covey, J., Feldman, M., Homan, C., Kaklamanis, C., Karanikolas, N., Procaccia, A., Rosenschein, J.: On the approximability of Dodgson and Young elections. In: Proceedings of SODA-2009 (2009)Google Scholar
  5. 5.
    Conitzer, V., Sandholm, T., Lang, J.: When are elections with few candidates hard to manipulate? Journal of the ACM 54(3) (2007)Google Scholar
  6. 6.
    Elkind, E., Faliszewski, P., Slinko, A.: On distance rationalizability of some voting rules. In: Proceedings of TARK-2009 (2009)Google Scholar
  7. 7.
    Elkind, E., Faliszewski, P., Slinko, A.: Swap bribery. Technical Report arXiv:0905.3885 [cs.GT], arXiv.org (May 2009)Google Scholar
  8. 8.
    Erdélyi, G., Nowak, M., Rothe, J.: Sincere-strategy preference-based approval voting broadly resists control. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 311–322. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Faliszewski, P.: Nonuniform bribery (short paper). In: Proceedings of AAMAS-2008 (2008)Google Scholar
  10. 10.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: The complexity of bribery in elections. In: Proceedings of AAAI-2006 (2006)Google Scholar
  11. 11.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Llull and Copeland voting computationally resist bribery and constructive control. Journal of Artificial Intelligence Research (2009)Google Scholar
  12. 12.
    Fellows, M., Rosamond, F., Slinko, A.: Sensing God’s will is fixed parameter tractable. Technical Report N.561, Department of Mathematics. The University of Auckland (July 2008)Google Scholar
  13. 13.
    Friedgut, E., Kalai, G., Nisan, N.: Elections can be manipulated often. In: Proceedings of FOCS-2008 (2008)Google Scholar
  14. 14.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)MATHGoogle Scholar
  15. 15.
    Konczak, K., Lang, J.: Voting procedures with incomplete preferences. In: Proceedins of the Multidisciplinary IJCAI-2005 Worshop on Advances in Preference Handling, July/August 2005, pp. 124–129 (2005)Google Scholar
  16. 16.
    Meskanen, T., Nurmi, H.: Closeness counts in social choice. In: Braham, M., Steffen, F. (eds.) Power, Freedom, and Voting. Springer, Heidelberg (2008)Google Scholar
  17. 17.
    Walsh, T.: Uncertainty in preference elicitation and aggregation. In: Proceedings of AAAI-2007 (2007)Google Scholar
  18. 18.
    Xia, L., Conitzer, V.: Determining possible and necessary winners under common voting rules given partial orders. In: Proceedings of AAAI-2008 (2008)Google Scholar
  19. 19.
    Xia, L., Conitzer, V.: Generalized scoring rules and the frequency of coalitional manipulability. In: Proceedings of EC-2008 (2008)Google Scholar
  20. 20.
    Xia, L., Conitzer, V.: A sufficient condition for voting rules to be frequently manipulable. In: Proceedings of EC-2008 (2008)Google Scholar
  21. 21.
    Zuckerman, M., Procaccia, A., Rosenschein, J.: Algorithms for the coalitional manipulation problem. Artificial Intelligence 173(2), 392–412 (2008)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Edith Elkind
    • 1
    • 2
  • Piotr Faliszewski
    • 3
  • Arkadii Slinko
    • 4
  1. 1.School of ECSUniversity of SouthamptonUK
  2. 2.Division of Mathematical SciencesNanyang Technological UniversitySingapore
  3. 3.Dept. of Computer ScienceAGH Univ. of Science and TechnologyKrakówPoland
  4. 4.Dept. of MathematicsUniversity of AucklandNew Zealand

Personalised recommendations