Advertisement

The Balloon Popping Problem Revisited: Lower and Upper Bounds

  • Hyunwoo Jung
  • Kyung-Yong Chwa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5814)

Abstract

We consider the balloon popping problem introduced by Immorlica et al. in 2007 [13]. This problem is directly related to the problem of profit maximization in online auctions, where an auctioneer is selling a collection of identical items to anonymous unit-demand bidders. The auctioneer has the full knowledge of bidders’ private valuations for the items and tries to maximize his profit. Compared with the profit of fixed price schemes, the competitive ratio of Immorlica et al.’s algorithm was in the range [1.64, 4.33]. In this paper, we narrow the gap to [1.659, 2].

Keywords

auction lower bound upper bound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrams., Z.: Revenue maximization when bidders have budgets. In: Proceedings of SODA 2006, pp. 1074–1082 (2006)Google Scholar
  2. 2.
    Andelman, N., Mansour, Y.: Auctions with budget constraints. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 26–38. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Balcan, M.F., Blum, A., Mansour, Y.: Item pricing for revenue maximization. In: Proceedings of EC 2008, pp. 50–59 (2008)Google Scholar
  4. 4.
    Bar-Yossef, Z., Hildrum, K., Wu, F.: Incentive-compatible online auctions for digital goods. In: Proceedings of SODA 2002, pp. 964–970 (2002)Google Scholar
  5. 5.
    Blum, A., Hartline, J.: Near-optimal online auctions. In: Proceedings of SODA 2005, pp. 1156–1163 (2005)Google Scholar
  6. 6.
    Borgs, C., Chayes, J., Immorlica, N., Mahdian, M., Saberi, A.: Multi-unit auctions with budget-constrained bidders. In: Proceedings of EC 2005, pp. 44–51 (2005)Google Scholar
  7. 7.
    Dobzinski, S.: Two randomized mechanisms for combinatorial auctions. In: Proceedings of APPROX-RANDOM 2007, pp. 89–103 (2007)Google Scholar
  8. 8.
    Dobzinski, S., Nisan, N., Schapira, M.: Truthful randomized mechanisms for combinatorial auctions. In: Proceedings of STOC 2006, pp. 644–652 (2006)Google Scholar
  9. 9.
    Dvoretzky, A., Motzkin, T.: A problem of arrangements. Duke Math. J. 14, 305–313 (1947)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Feige, U.: On maximizing welfare when utility functions are subadditive. In: Proceedings of STOC 2006, pp. 41–50 (2006)Google Scholar
  11. 11.
    Goulden, I.P., Serrano, L.G.: Maintaining the spirit of the reflection principle when the boundary has arbitrary integer slope. J. Comb. Theory Ser. A 104(2), 317–326 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Guruswami, V., Hartline, J.D., Karlin, A.R., Kempe, D., Kenyon, C., McSherry, F.: On profit-maximizing envy-free pricing. In: Proceedings of SODA 2005, pp. 1164–1173 (2005)Google Scholar
  13. 13.
    Immorlica, N., Karlin, A.R., Mahdian, M., Talwar, K.: Balloon popping with applications to ascending auctions. In: Proceedings of FOCS 2007, pp. 104–112 (2007)Google Scholar
  14. 14.
    Mahdian, M., Saberi, A.: Multi-unit auctions with unknown supply. In: Proceedings of EC 2006, pp. 243–249 (2006)Google Scholar
  15. 15.
    Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and generalized on-line matching. In: Proceedings of FOCS 2005, pp. 264–273 (2005)Google Scholar
  16. 16.
    Mirrokni, V., Schapira, M., Vondrak, J.: Tight information-theoretic lower bounds for welfare maximization in combinatorial auctions. In: Proceedings of EC 2008, pp. 70–77 (2008)Google Scholar
  17. 17.
    Mohanty, S.G.: Lattice path counting and applications. Academic Press, London (1979)zbMATHGoogle Scholar
  18. 18.
    Myerson, R.B.: Optimal auction design. Mathematics of Operations Research 6, 58–73 (1981)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hyunwoo Jung
    • 1
  • Kyung-Yong Chwa
    • 1
  1. 1.Division of Computer ScienceKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations