Getting to Know Your User – Unobtrusive User Model Maintenance within Work-Integrated Learning Environments

  • Stefanie N. Lindstaedt
  • Günter Beham
  • Barbara Kump
  • Tobias Ley
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5794)

Abstract

Work-integrated learning (WIL) poses unique challenges for user model design: on the one hand users’ knowledge levels need to be determined based on their work activities – testing is not a viable option; on the other hand users do interact with a multitude of different work applications – there is no central learning system. This contribution introduces a user model and corresponding services (based on SOA) geared to enable unobtrusive adaptability within WIL environments. Our hybrid user model services interpret usage data in the context of enterprise models (semantic approaches) and utilize heuristics (scruffy approaches) in order to determine knowledge levels, identify subject matter experts, etc. We give an overview of different types of user model services (logging, production, inference, control), provide a reference implementation within the APOSDLE project, and discuss early evaluation results.

Keywords

user model service-oriented architecture work-integrated learning adaptivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lindstaedt, S.N., Ley, T., Mayer, H.: Integrating Working and Learning in APOSDLE. In: Proceedings of the 11th Business Meeting of the Forum Neue Medien, November 10-11, University of Vienna, Austria (2005)Google Scholar
  2. 2.
    Eraut, M., Hirsh, W.: The Significance of Workplace Learning for Individuals, Groups and Organisations. SKOPE, Oxford & Cardiff Universities (2007)Google Scholar
  3. 3.
    Christl, C., Ghidini, C., Guss, J., Lindstaedt, S., Pammer, V., Scheir, P., Serafini, L.: Deploying semantic web technologies for work integrated learning in industry - A comparison: SME vs. Large sized company. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 709–722. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Jameson, A.: Adaptive interfaces and agents. In: Jacko, J.A., Sears, A. (eds.) Human-computer interaction handbook, pp. 305–330. Erlbaum, Mahwah (2003)Google Scholar
  5. 5.
    Kass, R., Finin, T.: Modeling the User in Natural Language Systems. Computational Linguistics 14(3), 5–22 (1988)Google Scholar
  6. 6.
    Wang, Y., Kobsa, A.: Respecting User’s Individual Privacy Constraints in Web Personalization. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 157–166. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Benyon, D.R., Murray, D.M.: Adaptive systems; from intelligent tutoring to autonomous agents. Knowledge-Based Systems 6(4), 197–219 (1993)CrossRefGoogle Scholar
  8. 8.
    Jameson, A.: Adaptive interfaces and agents. In: Sears, A., Jacko, J.A. (eds.) Human-computer interaction handbook, pp. 305–330. Erlbaum, Mahwah (2003)Google Scholar
  9. 9.
    Goecks, J., Shavlik, J.: Learning users’ interests by unobtrusively observing their normal behavior. In: IUI 2000: International Conference on Intelligent User Interfaces, pp. 129–132 (2000)Google Scholar
  10. 10.
    Schwab, I., Kobsa, A.: Adaptivity through Unobstrusive Learning. KI Special Issue on Adaptivity and User Modeling 3, 5–9 (2002)Google Scholar
  11. 11.
    Wolpers, M., Martin, G., Najjar, J., Duval, E.: Attention Metadata in Knowledge and Learning Management. In: Proceedings of the I-Know 2006 (2006)Google Scholar
  12. 12.
    Brusilovsky, P.: KnowledgeTree: A Distributed Architecture for Adaptive E-Learning. In: WWW 2004, New York, USA, May 17-22, pp. 104–113 (2004)Google Scholar
  13. 13.
    Fox, M., Grueninger, M.: Enterprise modeling. AI Magazine 19(3), 109–121 (1998)Google Scholar
  14. 14.
    Billett, S.: Constituting the Workplace Curriculum. Journal of Curriculum Studies 38(1), 31–48 (2006)CrossRefGoogle Scholar
  15. 15.
    Lindstaedt, S.N., Ley, T., Scheir, P., Ulbrich, A.: Applying Scruffy Methods to Enable Work-integrated Learning. Upgrade: The European Journal of the Informatics Professional 9(3), 44–50 (2008)Google Scholar
  16. 16.
    Lindstaedt, S.N., Scheir, P., Lokaiczyk, R., Kump, B., Beham, G., Pammer, V.: Knowledge Services for Work-integrated Learning. In: Proceedings of the European Conference on Technology Enhanced Learning (ECTEL) 2008, Maastricht, The Netherlands, September 16-19, pp. 234–244 (2008)Google Scholar
  17. 17.
    Ghidini, C., Rospocher, M., Serafini, L., Kump, B., Pammer, V., Faatz, A., Zinnen, A., Guss, J., Lindstaedt, S.: Collaborative Knowledge Engineering via Semantic MediaWiki. In: Proceedings of the I-Semantics 2008, Graz, Austria, September 3-5, pp. 134–141 (2008)Google Scholar
  18. 18.
    Korossy, K.: Extending the theory of knowledge spaces: A competence-performance approach. Zeitschrift für Psychologie 205, 53–82 (1997)Google Scholar
  19. 19.
    Doignon, J., Falmagne, J.: Spaces for the assessment of knowledge. International Journal of Man-Machine Studies 23, 175–196 (1985)CrossRefMATHGoogle Scholar
  20. 20.
    Ley, T., Ulbrich, A., Scheir, P., Lindstaedt, S.N., Kump, B., Albert, D.: Modelling Competencies for supporting Work-integrated Learning in Knowledge Work. Journal of Knowledge Management 12(6), 31–47 (2008)CrossRefGoogle Scholar
  21. 21.
    Lokaiczyk, R., Godehardt, E., Faatz, A., Goertz, M., Kienle, A., Wessner, W.M., Ulbrich, A.: Exploiting Context Information for Identification of Relevant Experts in Collaborative Workplace-Embedded E-Learning Environments. In: Proceedings of the EC-TEL, EC-TEL 2007, Crete, Grece, September 15-20, pp. 217–231 (2007)Google Scholar
  22. 22.
    Yimam-Seid, D., Kobsa, A.: Expert finding systems for organizations: Problem and domain analysis and the demoir approach. Journal of Organizational Computing and Electronic Commerce 13(1), 1–24 (2003)CrossRefGoogle Scholar
  23. 23.
    Boyle, C.: An adaptive hypertext reading system. User Modeling and User-Adapted Interaction 4(1), 1–19 (1994)MathSciNetCrossRefGoogle Scholar
  24. 24.
    APOSDLE Consortium: Second Prototype APOSDLE (2008), http://www.aposdle.tugraz.at/media/multimedia/files/second_prototype_aposdle
  25. 25.
    Dolog, P., Hentze, N., Nejdl, W., Sintek, M.: Personalization in distributed e-learning environments. In: Proceedings of the 13th international World Wide Web conference on Alternate track papers & posters, pp. 170–179 (2004)Google Scholar
  26. 26.
    Chin, D.N.: Empirical Evaluation of User Models and User-Adapted Systems. User Modeling and User-Adapted Interaction 11, 181–194 (2001)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Stefanie N. Lindstaedt
    • 1
    • 2
  • Günter Beham
    • 1
    • 2
  • Barbara Kump
    • 1
    • 2
  • Tobias Ley
    • 2
    • 3
  1. 1.Knowledge Management InstituteTU GrazGraz
  2. 2.Know CenterGraz
  3. 3.Cognitive Science SectionUniversity of GrazGrazAustria

Personalised recommendations