NetLearn: Social Network Analysis and Visualizations for Learning

  • Mohamed Amine Chatti
  • Matthias Jarke
  • Theresia Devi Indriasari
  • Marcus Specht
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5794)


The most valuable and innovative knowledge is hard to find, and it lies within distributed communities and networks. Locating the right community or person who can provide us with exactly the knowledge that we need and who can help us solve exactly the problems that we come upon, can be an efficient way to learn forward. In this paper, we present the details of NetLearn; a service that acts as a knowledge filter for learning. The primary aim of NetLearn is to leverage social network analysis and visualization techniques to help learners mine communities and locate experts that can populate their personal learning environments.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Polanyi, M.: The Tacit Dimension. Anchor books, New York (1967); based on the 1962 Terry lecturesGoogle Scholar
  2. 2.
    Lave, J., Wenger, E.: Situated Learning. Legitimate Peripheral Participation. Cambridge University Press, New York (1991)CrossRefGoogle Scholar
  3. 3.
    Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company: How Japanese Companies Create the Dynamics of Innovation. Oxford University, New York (1995)Google Scholar
  4. 4.
    Wenger, E.: Communities of Practice. Learning, Meaning and Identity. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  5. 5.
    Siemens, G.: Knowing Knowledge. (2006)Google Scholar
  6. 6.
    Siemens, G.: Connectivism: Learning as network-creation (2005)Google Scholar
  7. 7.
    van Harmelen, M.: Personal learning environments (2006)Google Scholar
  8. 8.
    Anderson, C.: The Long Tail: Why the Future of Business is Selling Less of More. Hyperion (2006)Google Scholar
  9. 9.
    Chatti, M.A., Jarke, M., Frosch-Wilke, D.: The future of e-learning: a shift to knowledge networking and social software. International Journal of Knowledge and Learning 3(4/5), 404–420 (2007)CrossRefGoogle Scholar
  10. 10.
    Ichise, R., Takeda, H., Muraki, T.: Research community mining with topic identification. In: 10th International Conference on Information Visualisation, IV 2006, London, UK, July 5-7, pp. 276–281. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  11. 11.
    McDonald, D.W.: Recommending collaboration with social networks: a comparative evaluation. In: Proceedings of the SIGCHI conference on Human factors in computing systems, Ft. Lauderdale, Florida, USA, pp. 593–600 (2003)Google Scholar
  12. 12.
    Zhang, J., Ackerman, M.S.: Searching for expertise in social networks: a simulation of potential strategies. In: Proceedings of the 2005 international ACM SIGGROUP conference on Supporting group work, pp. 71–80 (2005)Google Scholar
  13. 13.
    Zhang, J., Ackerman, M.S., Adamic, L.A.: Expertise networks in online communities: structure and algorithms. In: Williamson, C.L., Zurko, M.E., Patel-Schneider, P.F., Shenoy, P.J. (eds.) WWW, pp. 221–230. ACM, New York (2007)CrossRefGoogle Scholar
  14. 14.
    Kautz, H.A., Selman, B., Shah, M.A.: The hidden web. AI Magazine 18(2), 27–36 (1997)Google Scholar
  15. 15.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)CrossRefMATHGoogle Scholar
  16. 16.
    Brandes, U., Kenis, P., Wagner, D.: Communicating centrality in policy network drawings. IEEE Transactions on Visualization and Computer Graphics 9(2), 241–253 (2003)CrossRefGoogle Scholar
  17. 17.
    Bertini, E.: Social networks visualization: A brief survey (2005)Google Scholar
  18. 18.
    Chatti, M.A., Muhammad, N.F., Jarke, M.: ALOA: A web services driven framework for automatic learning object annotation. In: Dillenbourg, P., Specht, M. (eds.) EC-TEL 2008. LNCS, vol. 5192, pp. 86–91. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Motoda, H. (ed.): Active mining: new directions of data mining. IOS Press, Amsterdam (2002)MATHGoogle Scholar
  20. 20.
    Ichise, R., Takeda, H., Ueyama, K.: Community mining tool using bibliography data. In: Proceedings of the 9th International Conference on Information Visualisation, IV 2005, London, UK, July 6-8, pp. 953–958. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  21. 21.
    Travers, J., Milgram, S.: An experimental study of the small world problem. Sociometry 32, 425–443 (1969)CrossRefGoogle Scholar
  22. 22.
    Mika, P.: Flink: Semantic web technology for the extraction and analysis of social networks. Journal Web Semantics 3(2-3), 211–223 (2005)CrossRefGoogle Scholar
  23. 23.
    Chan, S., Pon, R.K., Cardenas, A.F.: Visualization and clustering of author social networks. In: 2006 Distributed Multimedia Systems Conference, Grand Canyon, Arizona, August 30 - September 1, pp. 174–180 (2006)Google Scholar
  24. 24.
    McDonald, D.W., Ackerman, M.S.: Expertise recommender: a flexible recommendation system and architecture. In: CSCW, pp. 231–240 (2000)Google Scholar
  25. 25.
    Kautz, H.A., Selman, B., Shah, M.A.: Referral web: Combining social networks and collaborative filtering. Commun. ACM 40(3), 63–65 (1997)CrossRefGoogle Scholar
  26. 26.
    Sangüesa, R., Pujol, J.: Netexpert: A multiagent system for expertise location. In: Proceedings of Workshop on Organizational Memories and Knowledge Management in the 17th International Joint Conference on Artificial Intelligence, IJCAI 2001, Seattle, pp. 85–93 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mohamed Amine Chatti
    • 1
  • Matthias Jarke
    • 1
  • Theresia Devi Indriasari
    • 1
  • Marcus Specht
    • 2
  1. 1.Informatik 5 {Information Systems}RWTH Aachen UniversityGermany
  2. 2.Open University HeerlenNetherlands

Personalised recommendations