Social Network Analysis of 45,000 Schools: A Case Study of Technology Enhanced Learning in Europe

  • Ruth Breuer
  • Ralf Klamma
  • Yiwei Cao
  • Riina Vuorikari
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5794)


Social networks make an essential contribution to knowledge sharing in our fast moving and changing world. However, it is difficult to apply new techniques to the complex, firm and Europe-wide differing educational systems. And this process for technology enhanced learning is still evolving and challenging. This paper presents the research results of applying social network analysis methods to a real and lively social network which intends to enhance the cooperation and knowledge sharing among over 45,000 European schools within the eTwinning network. We developed a web-based tool for network analysis and the visualization of various network views and data mining results as proof of concept. This prototype is evaluated on the educational social network eTwinning coordinated by the European Schoolnet, with special regard to its network structure and collaboration activity.


Social Networks Knowledge Sharing Social Network Analysis Network Visualization Data Mining Information and Communication Technologies Technology Enhanced Learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BE05]
    Brandes, U., Erlebach, T. (eds.): Network Analysis. LNCS, vol. 3418. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  2. [BGJ+07]
    Bienzle, H., Gelabert, E., Jütte, W., Kolyva, K., Meyer, N., Tilkin, G.: The Art of Networking. European Networks in Education. Wien, die Berater (2007)Google Scholar
  3. [BKW03]
    Brandes, U., Kenis, P., Wagner, D.: Communicating Centrality in Policy Network Drawings. IEEE Transactions on Visualization And Computer Graphics 9(2), 241–252 (2003)CrossRefGoogle Scholar
  4. [BW04a]
    Brandes, U., Wagner, D.: Netzwerkvisualisierung. Information Technology 46(3), 129–134 (2004)Google Scholar
  5. [BW04b]
    Brandes, U., Wagner, D.: Visone - Analysis and Visualization of Social Networks. In: Jünger, M., Mutzel, P. (eds.) Graph Drawing Software, pp. 321–340. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. [Com01]
    European Commission. Communication from the Commission: Making a European Area of Lifelong Learning a Reality, Bruxelles (November 2001),
  7. [Fre79]
    Freeman, L.C.: Centrality in social networks: Conceptual clarification. Social Networks 1(3), 215–239 (1979)MathSciNetCrossRefGoogle Scholar
  8. [JRW97]
    Jobson, D.J., Rahman, Z., Woodell, G.A.: A multiscale retinex for bridging the gap between color images andthe human observation of scenes. IEEE Transactions on Image Processing 6(7), 965–976 (1997)CrossRefGoogle Scholar
  9. [KCD+07]
    Klamma, R., Chatti, M.A., Duval, E., Fiedler, S., Hummel, H., Hvannberg, E.T., Kravcik, M., Law, E., Naeve, A., Scott, P.: Social Software for Life-Long Learning. Journal of Educational Technology & Society 10(3), 72–83 (2007)Google Scholar
  10. [KH08]
    Klamma, R., Haasler, C.: Dynamic Network Analysis of Wikis. In: Tochtermann, K., et al. (eds.) Proceedings of I-Know 2008 and I-Media 2008, International Conferences on Knowledge Management and New Media Technology, Graz, Austria, September 3-5. Journal of Universal Computer Science, J.UCS (2008)Google Scholar
  11. [KPC09]
    Klamma, R., Pham, M.C., Cao, Y.: You Never Walk Alone: Recommending Academic Events Based on Social Network Analysis. In: Proceedings of the First International Conference on Complex Science (Complex 2009), Shanghai, China, February 23-25 (2009)Google Scholar
  12. [Kre05]
    Krempel, L.: Visualisierung komplexer Strukturen. Grundlagen der Darstellung mehrdimensionaler Netzwerke. Campus Verlag, Frankfurt/Main (2005)Google Scholar
  13. [KSD06]
    Klamma, R., Spaniol, M., Denev, D.: PALADIN: A Pattern Based Approach to Knowledge Discovery in Digital Social Networks. In: Tochtermann, K., Maurer, H. (eds.) Proceedings of I-KNOW 2006, 6th International Conference on Knowledge Management, Graz, Austria, September 6-8, pp. 457–464, J.UCS (Journal of Universal Computer Science). Springer, Heidelberg (2006)Google Scholar
  14. [Lat96]
    Latour, B.: On actor-network theory: A few clarifications plus more than a few complications. Soziale Welt 47, 369–381 (1996)Google Scholar
  15. [LN05]
    Liben-Nowell, D.: An Algorithmic Approach to Social Networks. PhD thesis, MIT Computer Science and Artificial Intelligence Laboratory (2005)Google Scholar
  16. [Mil67]
    Milgram, S.: The Small World Problem. Psychology Today, 60–67 (1967)Google Scholar
  17. [Nik07]
    Nikolov, R.: Towards web 2.0 schools: Rethinking the teachers professional development. In: Joint IFIP Conference (June 2007),
  18. [SS00]
    Schulz-Schaeffer, I.: Akteur-Netzwerk-Theorie. Zur Koevolution von Gesellschaft, Natur und Technik. In: Weyer, J. (ed.) Soziale Netzwerke. Konzepte und Methoden der sozialwissenschaftlichen Netzwerkforschung, pp. 187–209. Oldenbourg Verlag (2000)Google Scholar
  19. [WF94]
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Structural Analysis in the Social Sciences, vol. 8. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  20. [WM97]
    Wooten, B., Miller, D.L.: The psychophysics of color. In: Hardin, C.L., Maffi, L. (eds.) Color Categories in Thought and Language, ch. III, pp. 59–88. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ruth Breuer
    • 1
  • Ralf Klamma
    • 1
  • Yiwei Cao
    • 1
  • Riina Vuorikari
    • 2
  1. 1.Informatik 5 (Information Systems)RWTH Aachen UniversityAachenGermany
  2. 2.European Schoolnet, eTwinningBrusselsBelgium

Personalised recommendations