Automated Educational Course Metadata Generation Based on Semantics Discovery

  • Marián Šimko
  • Mária Bieliková
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5794)


Current educational systems use advanced mechanisms for adaptation by utilizing available knowledge about the domain. However, describing a domain area in sufficient detail to allow accurate personalization is a tedious and time-consuming task. Only few works are related to the support of teachers by discovering the knowledge from educational material. In this paper we present a method for automated metadata generation addressing the educational knowledge discovery problem. We employ several techniques of data mining with regards to the e-learning environment and evaluate the method on functional programming course.


Educational knowledge discovery metadata generation domain model adaptive educational course authoring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brusilovsky, P.: Developing adaptive educational hypermedia systems: From design models to authoring tools. In: Murray, T., Blessing, S., Ainsworth, S. (eds.) Authoring Tools for Advanced Technology Learning Environment, pp. 377–409. Kluwer, DordrechtGoogle Scholar
  2. 2.
    Buitelaar, P., Olejnik, D., Sintek, M.: A protégé plug-in for ontology extraction from text based on linguistic analysis. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 31–44. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Cimiano, P., Hotho, A., Staab, S.: Learning Concept Hierarchies from Text Corpora using Formal Concept Analysis. Journal of AI Research 24, 305–339 (2005)zbMATHGoogle Scholar
  4. 4.
    Cimiano, P., et al.: Learning Taxonomic Relations from Heterogeneous Evidence. In: Proc. of ECAI Workshop on Ontology Learning and Population (2004)Google Scholar
  5. 5.
    Cristea, A.I., de Mooij, A.: Designer Adaptation in Adaptive Hypermedia. In: Proc. of Int. Conf. on Information Technology: Computers and Communications, ITCC 2003, Las Vegas. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  6. 6.
    Dicheva, D., Dichev, C.: Helping Courseware Authors to Build Ontologies: the Case of TM4L. In: 13th Int. Conf. on Artificial Intelligence in Education, pp. 77–84 (2007)Google Scholar
  7. 7.
    Diedrich, J., Balke, W.-T.: The Semantic GrowBag Algorithm: Automatically Deriving Categorization Systems. In: Kovács, L., Fuhr, N., Meghini, C. (eds.) ECDL 2007. LNCS, vol. 4675, pp. 1–13. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Fortuna, B., Mladenic, D., Grobelnik, M.: Semi-automatic Construction of Topic Ontologies. In: Ackermann, M., Berendt, B., Grobelnik, M., Hotho, A., Mladenič, D., Semeraro, G., Spiliopoulou, M., Stumme, G., Svátek, V., van Someren, M. (eds.) EWMF 2005 and KDO 2005. LNCS (LNAI), vol. 4289, pp. 121–131. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Šimko, M., Bieliková, M.: Automatic Concept Relationships Discovery for an Adaptive E-Course. In: Proc. of 2nd Int. Conf. on Educational Data Mining, EDM 2009, Cordoba, Spain, pp. 171–179 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marián Šimko
    • 1
  • Mária Bieliková
    • 1
  1. 1.Institute of Informatics and Software Engineering, Faculty of Informatics and Information TechnologySlovak University of TechnologyBratislavaSlovakia

Personalised recommendations