Context-Aware Service Discovery Using Case-Based Reasoning Methods

  • Markus Weber
  • Thomas Roth-Berghofer
  • Volker Hudlet
  • Heiko Maus
  • Andreas Dengel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5803)

Abstract

This paper presents an architecture for accessing distributed services with embedded systems using message oriented middleware. For the service discovery a recommendation system using case-based reasoning methods is utilized. The main idea is to take the context of each user into consideration in order to suggest appropriate services. We define our context and discuss how its attributes are compared.

The presented prototype was implemented for Ricoh & Sun Developer Challenge. Thus the client software was restricted to Ricoh’s Multi Functional Product as an embedded system. The similarity functions were designed and tested using myCBR, and the service recommender application is based on the jCOLIBRI CBR framework.

Keywords

Case-Based Reasoning context service discovery myCBR jCOLIBRI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ricoh: White paper: Embedded software architecture sdk (2004)Google Scholar
  2. 2.
    Bridge, D.: Product recommendation systems: A new direction. In: Workshop on CBR in Electronic Commerce at The International Conference on Case-Based Reasoning, ICCBR 2001, 79–86 (2001)Google Scholar
  3. 3.
    Schmidt, A., Beigl, M., Gellersen, H.W.: There is more to Context than Location. Computers & Graphics Journal 23, 893–901 (1999)CrossRefGoogle Scholar
  4. 4.
    Kofod-Petersen, A., Mikalsen, M.: An Architecture Supporting implementation of Context-Aware Services. In: Floréen, P., Lindén, G., Niklander, T., Raatikainen, K. (eds.) Workshop on Context Awareness for Proactive Systems (CAPS 2005), Helsinki, Finland, June 2005, pp. 31–42. HIIT Publications (2005)Google Scholar
  5. 5.
    Dey, A.K.: Understanding and using context. Personal and Ubiquitous Computing 5, 4–7 (2001)CrossRefGoogle Scholar
  6. 6.
    W3C: Xforms 1.0, 3 edn. (2007), http://www.w3.org/TR/xforms (Last accessed: 2009-02-09)
  7. 7.
    Saint-Andre, P.: Extensible Messaging and Presence Protocol (XMPP): Core. RFC 3920 (Proposed Standard) (October 2004)Google Scholar
  8. 8.
    Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. AICom - Artificial Intelligence Communications 7(1), 39–59 (1994)Google Scholar
  9. 9.
    Stahl, A., Roth-Berghofer, T.: Rapid prototyping of cbr applications with the open source tool mycbr. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 615–629. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Recio-García, J.A., Díaz-Agudo, B., González-Calero, P.A.: Prototyping recommender systems in jcolibri. In: ACM Conference On Recommender Systems RecSys 2008, pp. 243–250 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Markus Weber
    • 1
  • Thomas Roth-Berghofer
    • 1
    • 2
  • Volker Hudlet
    • 2
  • Heiko Maus
    • 1
  • Andreas Dengel
    • 1
    • 2
  1. 1.Knowledge Management DepartmentGerman Research Center for Artificial Intelligence DFKI GmbHKaiserslauternGermany
  2. 2.Knowledge-Based Systems Group, Department of Computer ScienceUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations