Advertisement

Learning Parametrised RoboCup Rescue Agent Behaviour Using an Evolutionary Algorithm

  • Michael Kruse
  • Michael Baumann
  • Tobias Knieper
  • Christoph Seipel
  • Lial Khaluf
  • Nico Lehmann
  • Alex Lermontow
  • Christian Messinger
  • Simon Richter
  • Thomas Schmidt
  • Daniel Swars
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5803)

Abstract

Although various methods have already been utilised in the RoboCup Rescue simulation project, we investigated a new approach and implemented self-organising agents without any central instance. Coordinated behaviour is achieved by using a task allocation system. The task allocation system supports an adjustable evaluation function, which gives the agents options on their behaviour. Weights for each evaluation function were evolved using an evolutionary algorithm. We additionally investigated different settings for the learning algorithm. We gained extraordinary high scores on deterministic simulation runs with reasonable acting agents.

Keywords

Evolutionary Algorithm Task Allocation Tournament Selection Coordination Strategy Roulette Wheel Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    RoboCup Rescue Project, http://www.robocuprescue.org
  2. 2.
    PaderRescue: Project-group for Agent-based Disaster Management and Emergent Realtime Rescue for Emergency SCenarios in Uncertain Environments, University of Paderborn, http://wwwcs.uni-paderborn.de/cs/ag-klbue/de/research/PaderRescue/pgrescue.html
  3. 3.
    Stef, B.M.P., Maurits, L.F., Visser, A.: The High-Level Communication Model for Multi-agent Coordination in the RoboCupRescue Simulator. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 503–509. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Ohta, M.: An Implementation of Rescue Agents with Genetic Algorithm. In: 2nd International Workshop on Synthetic Simulation and Robotics to Mitigate Earthquake Disaster, Lisbon (2004), http://www.rescuesystem.org/robocuprescue/SRMED2004/MOhta.pdf
  5. 5.
    Paquet, S., Bernier, N., Chaib-draa, B.: Comparison of Different Coordination Strategies for the RoboCupRescue Simulation. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 987–996. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Nair, R., Ito, T., Tambe, M., Marsella, S.: Task Allocation in the RoboCup Rescue Simulation Domain: A Short Note. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI), vol. 2377, pp. 751–754. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michael Kruse
    • 1
  • Michael Baumann
    • 1
  • Tobias Knieper
    • 1
  • Christoph Seipel
    • 1
  • Lial Khaluf
    • 1
  • Nico Lehmann
    • 1
  • Alex Lermontow
    • 1
  • Christian Messinger
    • 1
  • Simon Richter
    • 1
  • Thomas Schmidt
    • 1
  • Daniel Swars
    • 1
  1. 1.Students of Computer ScienceUniversity of PaderbornGermany

Personalised recommendations