Advertisement

Agent-Based Pedestrian Simulation of Train Evacuation Integrating Environmental Data

  • Franziska Klügl
  • Georg Klubertanz
  • Guido Rindsfüser
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5803)

Abstract

Simulating evacuation processes forms an established way of layout evaluation or testing routing strategies or sign location. A variety of simulation projects using different microscopic modeling and simulation paradigms has been performed. In this contribution, we are presenting a particular simulation project that evaluates different emergency system layout for a planned train tunnel. The particular interesting aspect of this project is the integration of realistic dynamic environmental data about temperature and smoke propagation and its effect on the agents equipped with high-level abilities.

Keywords

Agent Architecture Transportation Engineer Simulation Project Perception Range Social Force Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Daamen, W.: Modelling Passenger Flows in Public Transport Facilities. PhD thesis, Technische Universiteit Delft (2004)Google Scholar
  2. 2.
    Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Physical Review E 51(5), 4282–4286 (1995)CrossRefGoogle Scholar
  3. 3.
    Oleson, R., Kaup, D.J., Clarke, T.L., Malone, L.C., Boloni, L.: Social potential models for modeling traffic and transportation. In: Bazzan, A.L., Klügl, F. (eds.) Multi-Agent Systems for Traffic and Transportation Engineering, pp. 155–175. IGI Global, Hershey (2009)CrossRefGoogle Scholar
  4. 4.
    Schadschneider, A.: Cellular automaton approach to pedestrian dynamics - theory. In: Schreckenberg, M., Sharma, S.D. (eds.) Pedestrian and Evacuation Dynamics, pp. 75–85. Springer, New York (2002)Google Scholar
  5. 5.
    Burstedde, A., Kirchner, A., Klauck, K., Schadschneider, A., Zittartz, J.: Cellular automaton approach to pedestrian dynamics - applications. In: Schreckenberg, M., Sharma, S.D. (eds.) Pedestrian and Evacuation Dynamics, pp. 87–97. Springer, New York (2002)Google Scholar
  6. 6.
    Schadschneider, A., Küpfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Fundamentals of pedestrian and evacuation dynamics. In: Bazzan, A.L., Klügl, F. (eds.) Multi-Agent Systems for Traffic and Transportation Engineering, pp. 124–154. IGI Global, Hershey (2009)CrossRefGoogle Scholar
  7. 7.
    Osaragi, T.: Modeling of pedestrian behavior and its applications to spatial evaluation. In: AAMAS 2004, pp. 836–843. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  8. 8.
    Willis, A., Kukla, R., Hine, J., Kerridge, J.M.: Developing the behavioural rules for an agent-based model of pedestrian movement. In: Proc. of the European Transport Conference, pp. 69–80 (2000)Google Scholar
  9. 9.
    Klügl, F., Rindsfüser, G.: Large scale agent-based pedestrian simulation. In: Petta, P., Müller, J.P., Klusch, M., Georgeff, M. (eds.) MATES 2007. LNCS (LNAI), vol. 4687, pp. 145–156. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Bandini, S., Federici, M.L., Vizzari, G.: Situated cellular agents approach to crowd modeling and simulation. Cybernetics and Systems 38(7), 729–753 (2007)CrossRefzbMATHGoogle Scholar
  11. 11.
    Dijkstra, J., Jessurun, J., de Vries, B., Timmermans, H.: Agent architecture for simulating pedestrians in the built environment. In: Bazzan, A.L.C., Chaib-Draa, B., Klügl, F., Ossowski, S. (eds.) 4th Agents in Traffic and Transportation at AAMAS 2006, Hakodate Japan, pp. 8–16 (2006)Google Scholar
  12. 12.
    Timpf, S.: Towards simulating cognitive agents in public transport systems. In: Bazzan, A.L., Klügl, F. (eds.) Multi-Agent Systems for Traffic and Transportation Engineering, pp. 176–190. IGI Global, Hershey (2009)CrossRefGoogle Scholar
  13. 13.
    Lämmel, G., Rieser, M., Nagel, K.: Bottlenecks and congestion in evacuation scenarios: A microscopic evacuation simulation for large-scale disasters. In: Bazzan, A.L.C., Klügl, F., Ossowski, S. (eds.) Proc. of 5th Workshop on Agents in Traffic and Transportation, at AAMAS 2008, Estoril, PT, pp. 54–61 (2008)Google Scholar
  14. 14.
    Nakajima, Y., Shiina, H., Yamane, S., Ishida, T., Yamaki, H.: Disaster evacuation guide: Using a massively multiagent server and gps mobile phones. In: 2007 International Symposium on Applications and the Internet (SAINT 2007), Hiroshima, Japan, January 15-19 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Franziska Klügl
    • 1
  • Georg Klubertanz
    • 2
  • Guido Rindsfüser
    • 2
  1. 1.Modeling and Simulation Research CenterÖrebro UniversityÖrebroSweden
  2. 2.Emch& Berger, AG BernBernSwitzerland

Personalised recommendations