Advertisement

Hierarchical Clustering of Sensorimotor Features

  • Konrad Gadzicki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5803)

Abstract

In this paper a method for clustering patterns represented by sets of sensorimotor features is introduced. Sensorimotor features as a biologically inspired representation have proofed to be working for the recognition task, but a method for unsupervised learning of classes from a set of patterns has been missing yet. By utilization of Self-Organizing Maps as a intermediate step, a hierarchy can be build with standard agglomerative clustering methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zetzsche, C., Wolter, J., Schill, K.: Sensorimotor representation and knowledge-based reasoning for spatial exploration and localisation. Cognitive Processing 9, 283–297 (2008)CrossRefGoogle Scholar
  2. 2.
    Reineking, T.: Active Vision-based Localization using Dempster-Shafer Theory. Mastersthesis, University of Bremen (2008)Google Scholar
  3. 3.
    Collins, A.M., Quillian, M.R.: Retrieval Time from Semantic Memory. Journal of Verbal Learning and Verbal Behaviour 8, 240–247 (1969)CrossRefGoogle Scholar
  4. 4.
    Oesterreich, R.: Handlungsregulation und Kontrolle. Urban & Schwarzberger, München (1981)Google Scholar
  5. 5.
    Stevens, A., Coupe, P.: Distortions in Judged Spatial Relations. Cognitive Psychology 10, 422–437 (1978)CrossRefGoogle Scholar
  6. 6.
    Johnson, N.F.: The Role of Chunking and Organization in the Process of Recall. In: Bower, G. (ed.) Psychology of Language and Motivation, vol. 4 (1970)Google Scholar
  7. 7.
    Reed, S.K.: Structural Descriptions and the Limitations of Visual Images. Memory and Cognition 2, 329–336 (1974)CrossRefGoogle Scholar
  8. 8.
    Schill, K., Umkehrer, E., Beinlich, S., Krieger, G., Zetzsche, C.: Scene analysis with saccadic eye movements: Top-down and bottom-up modeling. Journal of Electronic Imaging 10, 152–160 (2001)CrossRefGoogle Scholar
  9. 9.
    Zetzsche, C., Nuding, U.: Nonlinear and higher-order approaches to the encoding of natural scenes. Network: Computation in Neural Systems 16, 191–221 (2005)CrossRefGoogle Scholar
  10. 10.
    Zetzsche, C., Krieger, G.: Intrinsic dimensionality: nonlinear image operators and higher-order statistics. In: Nonlinear image processing, pp. 403–441. Academic Press, Orlando (2001)CrossRefGoogle Scholar
  11. 11.
    Kohonen, T.: Self-Organizing Maps. Springer, Berlin (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kohonen, T.: Self Organized Formation of Topologically Correct Feature Maps. Biological Cybernetics 43, 59–69 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kangas, J.: On the Analysis of Pattern Sequences by Self-Organizing Maps. PhD thesis, Helsinki University of Technology (1994), http://nucleus.hut.fi/~jari/papers/thesis94.ps.Z
  14. 14.
    Knudsen, E.I., du Lac, S., Esterly, S.D.: Computational maps in the brain. Annu. Rev. Neurosci. 10, 41–65 (1987)CrossRefGoogle Scholar
  15. 15.
    Anderson, J.A., Pellionisz, A., Rosenfeld, E.: Neurocomputing: directions for research, vol. 2. MIT Press, Cambridge (1990)Google Scholar
  16. 16.
    Ghosh, J., Strehl, A.: Similarity-Based Text Clustering: A Comparative Study. In: Kogan, J., Nicholas, C., Teboulle, M. (eds.) Grouping Multidimensional Data. Springer, Berlin (2006)Google Scholar
  17. 17.
    Ward, J.H.: Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association 58, 236–244 (1963)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Salton, G., Wong, A., Yang, C.S.: A Vector Space Model for Automatic Indexing. Communications of the ACM 18, 613–620 (1975)CrossRefzbMATHGoogle Scholar
  19. 19.
    Larsen, B., Aone, C.: Fast and effective text mining using linear-time document clustering. In: KDD 1999 Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 16–22 (1999)Google Scholar
  20. 20.
    Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-20). Technical Report CUCS-005-96 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Konrad Gadzicki
    • 1
  1. 1.University of BremenBremenGermany

Personalised recommendations