Advertisement

Presenting Proofs with Adapted Granularity

  • Marvin Schiller
  • Christoph Benzmüller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5803)

Abstract

When mathematicians present proofs they usually adapt their explanations to their didactic goals and to the (assumed) knowledge of their addressees. Modern automated theorem provers, in contrast, present proofs usually at a fixed level of detail (also called granularity). Often these presentations are neither intended nor suitable for human use. A challenge therefore is to develop user- and goal-adaptive proof presentation techniques that obey common mathematical practice. We present a flexible and adaptive approach to proof presentation based on classification. Expert knowledge for the classification task can be hand-authored or extracted from annotated proof examples via machine learning techniques. The obtained models are employed for the automated generation of further proofs at an adapted level of granularity.

Keywords

Adaptive proof presentation proof tutoring automated reasoning machine learning granularity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartle, R.G., Sherbert, D.: Introduction to Real Analysis, 2nd edn. Wiley, Chichester (1982)zbMATHGoogle Scholar
  2. 2.
    Benzmüller, C., Horacek, H., Kruijff-Korbayová, I., Pinkal, M., Siekmann, J.H., Wolska, M.: Natural language dialog with a tutor system for mathematical proofs. In: Lu, R., Siekmann, J.H., Ullrich, C. (eds.) Cognitive Systems: Joint Chinese-German Workshop. LNCS (LNAI), vol. 4429, pp. 1–14. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Benzmüller, C., Horacek, H., Lesourd, H., Kruijff-Korbayová, I., Schiller, M., Wolska, M.: A corpus of tutorial dialogs on theorem proving; the influence of the presentation of the study-material. In: Proc. Intl. Conference on Language Resources and Evaluation (LREC 2006), Genoa, Italy, ELDA (2006)Google Scholar
  4. 4.
    Autexier, S., Benzmüller, C., Dietrich, D., Meier, A., Wirth, C.P.: A generic modular data structure for proof attempts alternating on ideas and granularity. In: [14], pp. 126–142Google Scholar
  5. 5.
    Fiedler, A.: P.rex: An interactive proof explainer. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 416–420. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Denney, E., Power, J., Tourlas, K.: Hiproofs: A hierarchical notion of proof tree. In: Proc. of the 21st Annual Conf. on Mathematical Foundations of Progamming Semantics (MFPS XXI). ENTCS, vol. 155, pp. 341–359. Elsevier, Amsterdam (2006)Google Scholar
  7. 7.
    Autexier, S., Fiedler, A.: Textbook proofs meet formal logic - the problem of underspecification and granularity. In: [14], pp. 96–110Google Scholar
  8. 8.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)Google Scholar
  9. 9.
    Schiller, M., Benzmüller, C.: Granularity-adaptive proof presentation. Technical report, SEKI Working-Paper (2009), http://arxiv.org/pdf/0903.0314v4
  10. 10.
    Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization. In: Proc. 15th Intl. Conf. on Machine Learning, pp. 144–151. Morgan Kaufmann, San Francisco (1998)Google Scholar
  11. 11.
    Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. In: Schoelkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning, pp. 185–208. MIT Press, Cambridge (1998)Google Scholar
  12. 12.
    Hobbs, J.R.: Granularity. In: Joshi, A.K. (ed.) Proc. of the 9th Int. Joint Conf. on Artificial Intelligence (IJCAI), pp. 432–435. Morgan Kaufmann, San Francisco (1985)Google Scholar
  13. 13.
    McCalla, G., Greer, J., Barrie, B., Pospisil, P.: Granularity hierarchies. In: Computers & Mathematics with Applications, vol. 23(2-5), pp. 363–375. Elsevier, Amsterdam (1992)Google Scholar
  14. 14.
    Kohlhase, M. (ed.): MKM 2005. LNCS (LNAI), vol. 3863. Springer, Heidelberg (2006)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marvin Schiller
    • 1
  • Christoph Benzmüller
    • 2
  1. 1.German Research Center for Artificial Intelligence (DFKI)BremenGermany
  2. 2.International University in GermanyBruchsalGermany

Personalised recommendations