A Framework for Interactive Hybrid Planning

  • Bernd Schattenberg
  • Julien Bidot
  • Sascha Geßler
  • Susanne Biundo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5803)


Hybrid planning provides a powerful mechanism to solve real-world planning problems. We present a domain-independent, mixed-initiative approach to plan generation that is based on a formal concept of hybrid planning. It allows for any interaction modalities and models of initiative while preserving the soundness of the planning process. Adequately involving the decision competences of end-users in this way will improve the application potential as well as the acceptance of the technology.


Plan Generation Partial Plan Interactive Planning Hierarchical Task Network System Fringe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cesta, A., Cortellessa, G., Oddi, A., Policella, N.: Studying decision support for MARS EXPRESS planning tasks: A report from the MEXAR experience. In: Proc. of the 4th Int. Workshop for Planning and Scheduling for Space, pp. 232–240 (2004)Google Scholar
  2. 2.
    Hearst, M.A.: Trends & controversies: Mixed-initiative interaction. IEEE Intelligent Systems 14(5), 14–23 (1999)CrossRefGoogle Scholar
  3. 3.
    Burstein, M.H., McDermott, D.V.: Issues in the development of human-computer mixed-initiative planning systems. In: Gorayska, B., Mey, J.L. (eds.) Cognitive Technology: In Search of a Humane Interface, pp. 285–303. Elsevier Science, Amsterdam (1996)CrossRefGoogle Scholar
  4. 4.
    Ai-Chang, M., et al.: MAPGEN: Mixed-initiative planning and scheduling for the Mars exploration rover mission. IEEE Intelligent Systems 19(1), 8–12 (2004)CrossRefGoogle Scholar
  5. 5.
    Tate, A., Dalton, J., Levine, J., Nixon, A.: Task achieving agents on the world wide web. In: Spinning the Semantic Web, pp. 431–458. MIT Press, Cambridge (2003)Google Scholar
  6. 6.
    Ambite, J.L., Knoblock, C.A., Muslea, M., Minton, S.: Conditional constraint networks for interleaved planning and information gathering. IEEE Intelligent Systems 20(2), 25–33 (2005)CrossRefGoogle Scholar
  7. 7.
    Ferguson, G., Allen, J.F.: TRIPS: An integrated intelligent problem-solving assistant. In: AAAI/IAAI, pp. 567–572 (1998)Google Scholar
  8. 8.
    Biundo, S., Schattenberg, B.: From abstract crisis to concrete relief – A preliminary report on combining state abstraction and HTN planning. In: Cesta, A., Borrajo, D. (eds.) Proc. of the 6th European Conf. on Planning, pp. 157–168 (2001)Google Scholar
  9. 9.
    Schattenberg, B., Bidot, J., Biundo, S.: On the construction and evaluation of flexible plan-refinement strategies. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 367–381. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Schattenberg, B., Biundo, S.: A unifying framework for hybrid planning and scheduling. In: Freksa, C., Kohlhase, M., Schill, K. (eds.) KI 2006. LNCS (LNAI), vol. 4314, pp. 361–373. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Bernd Schattenberg
    • 1
  • Julien Bidot
    • 1
  • Sascha Geßler
    • 1
  • Susanne Biundo
    • 1
  1. 1.Institute for Artificial IntelligenceUlm UniversityGermany

Personalised recommendations