A Novel and Efficient Method to Extract Features and Vector Creation in Iris Recognition System

  • Amir Azizi
  • Hamid Reza Pourreza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5803)

Abstract

The selection of the optimal feature subset and the classification has become an important issue in the field of iris recognition. In this paper we propose several methods for iris feature subset selection and vector creation. In this paper we propose a new feature extraction method for iris recognition based on contourlet transform. Contourlet transform captures the intrinsic geometrical structures of iris image. For reducing the feature vector dimensions we use the method for extract only significant bit and information from normalized iris images. In this method we ignore fragile bits. At last, the feature vector is created by two methods: Co-occurrence matrix properties and contourlet coefficients. For analyzing the desired performance of our proposed method, we use the CASIA dataset, which is comprised of 108 classes with 7 images in each class and each class represented a person. Experimental results show that the proposed increase the classification accuracy and also the iris feature vector length is much smaller versus the other methods.

Keywords

Biometric Iris Recognition Contourlet Transform Co-occurrence Matrix Contourlet coefficients 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wildes, R.P.: Iris recognition: an emerging biometric technology. Proceedings of the IEEE 85(9), 1348–1363 (1997)CrossRefGoogle Scholar
  2. 2.
    Jain, A., Bolle, R., Pankanti, S.: Biometrics: Personal Identification in a Networked Society. Kluwer Academic Publishers, Norwell (1999)CrossRefGoogle Scholar
  3. 3.
    Daugman, J.: Biometric personal identification system based on iris analysis, US patent no. 5291560 (1994)Google Scholar
  4. 4.
    Mansfield, T., Kelly, G., Chandler, D., Kane, J.: Biometric product testing. Final Report, National Physical Laboratory, Middlesex, U.K (2001)Google Scholar
  5. 5.
    Daugman, J.G.: High confidence visual recognition of persons by a test of statistical independence. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(11), 1148–1161 (1993)CrossRefGoogle Scholar
  6. 6.
    Daugman, J.: Demodulation by complex-valued wavelets for stochastic pattern recognition. International Journal of Wavelets, Multiresolution and Information Processing 1(1), 1–17 (2003)CrossRefMATHGoogle Scholar
  7. 7.
    CASIA, Chinese Academy of Sciences – Institute of Automation. Database of 756 Grayscale Eye Images. Versions 1.0 (2003), http://www.sinobiometrics.com
  8. 8.
    He, X., Shi, P.: An efficient iris segmentation method for recognition. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005. LNCS, vol. 3687, pp. 120–126. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Bae, K., Noh, S., Kim, J.: Iris feature extraction using independent component analysis. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 1059–1060. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Boles, W.W., Boashash, B.: A human identification technique using images of the iris and wavelet transform. IEEE Transactions on Signal Processing 46(4), 1185–1188 (1998)CrossRefGoogle Scholar
  11. 11.
    Chong, S.C., Teoh, A.B.J., Ngo, D.C.L.: Iris authentication using privatized advanced correlation filter. In: Zhang, D., Jain, A.K. (eds.) ICB 2005. LNCS, vol. 3832, pp. 382–388. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Daugman, J.: Statistical richness of visual phase information: update on recognizing persons by iris patterns. International Journal of Computer Vision 45(1), 25–38 (2001)CrossRefMATHGoogle Scholar
  13. 13.
    He, X., Shi, P.: An efficient iris segmentation method for recognition. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005. LNCS, vol. 3687, pp. 120–126. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Jeong, D.S., Park, H.-A., Park, K.R., Kim, J.: Iris recognition in mobile phone based on adaptive Gabor filter. In: Zhang, D., Jain, A.K. (eds.) ICB 2005. LNCS, vol. 3832, pp. 457–463. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Vijaya Kumar, B.V.K., Xie, C., Thornton, J.: Iris verification using correlation filters. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 697–705. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Lee, E.C., Park, K.R., Kim, J.: Fake iris detection by using purkinje image. In: Zhang, D., Jain, A.K. (eds.) ICB 2005. LNCS, vol. 3832, pp. 397–403. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Lim, S., Lee, K., Byeon, O., Kim, T.: Efficient iris recognition through improvement of feature vector and classifier. Electronics and Telecommunications Research Institute Journal 23(2), 61–70 (2001)Google Scholar
  18. 18.
    Liu, X., Bowyer, K.W., Flynn, P.J.: Experiments with an improved iris segmentation algorithm. In: Proceedings of the 4th IEEE Workshop on Automatic Identification Advanced Technologies (AUTO ID 2005), Buffalo, NY, USA, October 2005, pp. 118–123 (2005)Google Scholar
  19. 19.
    Liu, X., Bowyer, K.W., Flynn, P.J.: Experimental evaluation of iris recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, Calif, USA, June 2005, vol. 3, pp. 158–165 (2005)Google Scholar
  20. 20.
    Ma, L., Tan, T., Wang, Y., Zhang, D.: Personal identification based on iris texture analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12), 1519–1533 (2003)CrossRefGoogle Scholar
  21. 21.
    Daugman, J.: How Iris Recognition works. IEEE Transactions on Circuits and systems for video Technology 14(1), 21–30 (2004)CrossRefGoogle Scholar
  22. 22.
    Ali, J.M.H., Hussanien, A.E.: An Iris Recognition System to Enhance E-security Environment Based on Wavelet Theory. AMO - Advanced Modeling and Optimization 5(2) (2003)Google Scholar
  23. 23.
    Do, M.N., Vetterli, M.: The contourlet transform: An Efficient directional multiresolution image representation. IEEE Transactions on Image Processing 14(12), 2091–2106Google Scholar
  24. 24.
    Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983); Bamberger, R.H., Smith, M.J.T.: A filter bank for the directional decomposition of images: Theory and design. IEEE Trans. Signal Proc. 40(4), 882–893 (1992)CrossRefGoogle Scholar
  25. 25.
    Hollingsworth, K.P., Bowyer, K.W.: The Best Bits in an Iris Code. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) (April 2008)Google Scholar
  26. 26.
    Haralick, R.M., Shanmugam, K., Din, L.: Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics 3(6), 610–621 (1973)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Amir Azizi
    • 1
  • Hamid Reza Pourreza
    • 2
  1. 1.Islamic Azad University Qazvin BranchIran
  2. 2.Ferdowsi University of MashhadIran

Personalised recommendations