Fast Hand Detection Using Posture Invariant Constraints

  • Nils Petersen
  • Didier Stricker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5803)


The biggest challenge in hand detection and tracking is the high dimensionality of the hand’s kinematic configuration space of about 30 degrees of freedom, which leads to a huge variance in its projections. This makes it difficult to come to a tractable model of the hand as a whole. To overcome this problem, we suggest to concentrate on posture invariant local constraints, that exist on finger appearances. We show that, besides skin color, there is a number of additional geometric and photometric invariants. This paper presents a novel approach to real-time hand detection and tracking by selecting local regions that comply with these posture invariants. While most existing methods for hand tracking rely on a color based segmentation as a first preprocessing step, we integrate color cues at the end of our processing chain in a robust manner. We show experimentally that our approach still performs robustly above cluttered background, when using extremely low quality skin color information. With this we can avoid a user- and lighting-specific calibration of skin color before tracking.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kolsch, M., Turk, M.: Robust hand detection. In: Int. Conf. on Automatic Face and Gesture Recognition, May 17–19, pp. 614–619 (2004)Google Scholar
  2. 2.
    Athitsos, V., Sclaroff, S.: Estimating 3d hand pose from a cluttered image. In: CVPR, June 2003, vol. 2, pp. II–432–II–439 (2003)Google Scholar
  3. 3.
    de La Gorce, M., Paragios, N., Fleet, D.: Model-based hand tracking with texture, shading and self-occlusions. In: CVPR (2008)Google Scholar
  4. 4.
    Rehg, J., Kanade, T.: Digiteyes: vision-based hand tracking for human-computer interaction. In: Workshop on Motion of Non-Rigid and Articulated Objects, November 1994, pp. 16–22 (1994)Google Scholar
  5. 5.
    Stenger, B., Thayananthan, A., Torr, P., Cipolla, R.: Model-based hand tracking using a hierarchical bayesian filter. PAMI 28(9), 1372 (2006)CrossRefMATHGoogle Scholar
  6. 6.
    von Hardenberg, C., Bérard, F.: Bare-hand human-computer interaction. In: Workshop on Perceptive User Interfaces, pp. 1–8. ACM, New York (2001)Google Scholar
  7. 7.
    Lee, T., Hollerer, T.: Handy ar: Markerless inspection of augmented reality objects using fingertip tracking. In: Int. Symp. on Wearable Computers, pp. 83–90 (2007)Google Scholar
  8. 8.
    Oka, K., Sato, Y., Koike, H.: Real-time fingertip tracking and gesture recognition. IEEE Computer Graphics and Applications 22(6), 64–71 (2002)CrossRefGoogle Scholar
  9. 9.
    Maccormick, J., Isard, M.: Partitioned sampling, articulated objects, and interface-quality hand tracking. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 3–19. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Koller, T., Gerig, G., Szekely, G., Dettwiler, D.: Multiscale detection of curvilinear structures in 2-d and 3-d imagedata. In: ICCV, pp. 864–869 (1995)Google Scholar
  11. 11.
    Steger, C.: Extracting curvilinear structures: A differential geometric approach. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1065, pp. 630–641. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  12. 12.
    Bradski, G.R., et al.: Computer vision face tracking for use in a perceptual user interface. Intel Technology Journal 2(2), 12–21 (1998)Google Scholar
  13. 13.
    Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. PAMI 24(5), 603–619 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nils Petersen
    • 1
  • Didier Stricker
    • 1
  1. 1.DFKI GmbHKaiserslauternGermany

Personalised recommendations