Solving Fully-Observable Non-deterministic Planning Problems via Translation into a General Game

  • Peter Kissmann
  • Stefan Edelkamp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5803)

Abstract

In this paper, we propose a symbolic planner based on BDDs, which calculates strong and strong cyclic plans for a given non-deterministic input. The efficiency of the planning approach is based on a translation of the non-deterministic planning problems into a two-player turn-taking game, with a set of actions selected by the solver and a set of actions taken by the environment.

The formalism we use is a PDDL-like planning domain definition language that has been derived to parse and instantiate general games. This conversion allows to derive a concise description of planning domains with a minimized state vector, thereby exploiting existing static analysis tools for deterministic planning.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bakera, M., Edelkamp, S., Kissmann, P., Renner, C.D.: Solving μ-calculus parity games by symbolic planning. In: MoChArt 2008. LNCS (LNAI), vol. 5348, pp. 15–33. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    Bercher, P., Mattmüller, R.: A planning graph heuristic for forward-chaining adversarial planning. In: ECAI, pp. 921–922 (2008)Google Scholar
  3. 3.
    Bertoli, P., Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: MBP: A model based planner. In: IJCAI Workshop on Planning under Uncertainty and Incomplete Information, pp. 93–97 (2001)Google Scholar
  4. 4.
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers 35(8), 677–691 (1986)CrossRefMATHGoogle Scholar
  5. 5.
    Bryce, D., Buffet, O.: 6th International Planning Competition: Uncertainty Part (2008)Google Scholar
  6. 6.
    Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, strong, and strong cyclic planning via symbolic model checking. Artificial Intelligence 147(1–2), 35–84 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cleaveland, R., Klein, M., Steffen, B.: Faster model checking for the modal μ-calculus. Theoretical Computer Science 663, 410–422 (1992)Google Scholar
  9. 9.
    Edelkamp, S.: Symbolic exploration in two-player games: Preliminary results. In: AIPS 2002, Workshop on Model Checking, pp. 40–48 (2002)Google Scholar
  10. 10.
    Edelkamp, S., Kissmann, P.: Symbolic classification of general two-player games. In: Dengel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R. (eds.) KI 2008. LNCS (LNAI), vol. 5243, pp. 185–192. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Emerson, E.A., Jutla, C.S.: Tree automata, μ-calculus and determinacy. In: Foundations of Computer Science, pp. 368–377 (1991)Google Scholar
  12. 12.
    Helmert, M.: Understanding Planning Tasks: Domain Complexity and Heuristic Decomposition. LNCS (LNAI), vol. 4929. Springer, Heidelberg (2008)MATHGoogle Scholar
  13. 13.
    Jensen, R.M., Veloso, M.M., Bowling, M.H.: Obdd-based optimistic and strong cyclic adversarial planning. In: ECP, pp. 265–276 (2001)Google Scholar
  14. 14.
    Kissmann, P., Edelkamp, S.: Instantiating general games. In: IJCAI-Workshop on General Game Playing (2009)Google Scholar
  15. 15.
    Liu, X., Smolka, S.A.: Simple linear-time algorithms for minimal fixed points. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 53–66. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Love, N.C., Hinrichs, T.L., Genesereth, M.R.: General game playing: Game description language specification. Technical Report LG-2006-01, Stanford Logic Group (April 2006)Google Scholar
  17. 17.
    McMillan, K.L.: Temporal logic and model checking. In: Verification of Digital and Hybrid Systems, pp. 36–54 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Peter Kissmann
    • 1
  • Stefan Edelkamp
    • 2
  1. 1.Fakultät für InformatikTU DortmundGermany
  2. 2.Technologie-Zentrum InformatikUniversität BremenGermany

Personalised recommendations