Design and Implementation of a Methodology for Identifying Website Keyobjects

  • Luis E. Dujovne
  • Juan D. Velásquez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5711)

Abstract

Rich media websites like Flickr or Youtube have attracted the largest user bases in the last years, this trend shows web users are particulary interested in multimedia presentation formats. On the other hand, Web Usage and Content Mining have focused mainly in text-based content. In this paper we introduce a methodology for discovering Website Keyobjects based in both Web Usage and Content Mining. Keyobjects could be any text, image or video present in a web page, that are the most appealing objects to users. The methodology was tested over the corporate site of dMapas a Chilean Geographical Information Systems service provider.

Keywords

Web Mining Website Keyobjects Web User Preferences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Velásquez, J.D., Bassi, A., Yasuda, H., Aoki, T.: Towards the identification of keywords in the web site text context: A methodological approach. Journal of web information systems 1, 11–15 (2005)Google Scholar
  2. 2.
    W3C Semantic Web Group, Resource Description Framework Specification: Concepts and Abstract Syntax (2004)Google Scholar
  3. 3.
    Dublin Core Metadata Initiative (DCMI), http://dublincore.org/
  4. 4.
    Salembier, P., Smith, J.: MPEG-7 multimedia description schemes. IEEE Transactions on Circuits and Systems for Video Technology 11(6), 748–759 (2001)CrossRefGoogle Scholar
  5. 5.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, Reading (1999)Google Scholar
  6. 6.
    Berendt, B., Spiliopoulou, M.: Analysis of navigation behaviour in web sites integrating multiple information systems. The VLDB Journal 9, 56–75 (2000)CrossRefGoogle Scholar
  7. 7.
    Seco, M.: Problemas Formales de la Definición Lexicográfica. In: Estudios de Lexicografìa Española, Gredos, Madrid (2003)Google Scholar
  8. 8.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. Sov. Phys. Dokl., 705–710 (1966)Google Scholar
  9. 9.
    Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (2001)CrossRefMATHGoogle Scholar
  10. 10.
    Catledge, L., Pitkow, J.: Characterizing browsing behaviours on the world wide web. Computer Networks and ISDN systems 26, 1065–1073 (1995)CrossRefGoogle Scholar
  11. 11.
    Weka Open Source Machine Learning Software, http://www.cs.waikato.ac.nz/ml/weka/

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Luis E. Dujovne
    • 1
  • Juan D. Velásquez
    • 1
  1. 1.Departamento de Ingeniería IndustrialUniversidad de ChileChile

Personalised recommendations