Advertisement

Ontology-Based Concept Indexing of Images

  • Rossitza Setchi
  • Qiao Tang
  • Carole Bouchard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5711)

Abstract

The search for inspirational images is an important part of creative design. When identifying inspirational materials, designers search semantic domains that are different from the target domain and use semantic adjectives in combination with the traditionally used keywords. This paper describes research conducted within the TRENDS project, which aimed at developing a software tool for the needs of concept cars designers. The goal was to assist them with the process of collecting inspirational images from various sectors of influence. The paper describes the ontology tagging algorithm developed to index the images in the TRENDS database using concepts from two ontologies: a generic ontology called OntoRo, and a domain-specific ontology CTA developed for the needs of the project. The paper presents the evaluation of the developed algorithm and suggests areas for further research.

Keywords

Concept indexing semantic indexing ontology-based annotation semantic search ontology tagging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Westerman, S.J., Kaur, S., Mougenot, C., Sourbe, L., Bouchard, C.: The impact of Computer-based Support on Product Designers’ Search for Inspirational Materials. In: Proc. of the 3rd I*PROMS Int. Conf., Cardiff, UK, July 2-13, pp. 581–586 (2007)Google Scholar
  2. 2.
    Setchi, R., Tang, Q.: Semantic-based Representation of Content Using Concept Indexing. In: Proc. of the 3rd I*PROMS Int. Conf., Cardiff, UK, July 2-13, pp. 611–618 (2007)Google Scholar
  3. 3.
    Bouchard, C., Mougenot, C., Omhover, J.F., Setchi, R., Aoussat, A.: Building a Domain Ontology for Designers: Towards a Kansei Based Ontology. In: Proc. of the 3rd I*PROMS Int. Conf., Cardiff, UK, July 2-13, pp. 587–592 (2007)Google Scholar
  4. 4.
    Tsai, C.-F.: A Review of Image Retrieval Methods for Digital Cultural Heritage Resources. Online Information Review 31(2), 185–198 (2007)CrossRefGoogle Scholar
  5. 5.
    Ferecatu, M., Boujemaa, N., Crucianu, M.: Semantic Interactive Image Retrieval Combining Visual and Conceptual Content Description. ACM Multimedia Systems Journal 13(5-6), 309–322 (2008)CrossRefGoogle Scholar
  6. 6.
    Enser, P.G.B., Sandom, C.J., Hare, J.S., Lewis, P.H.: Facing the Reality of Semantic Image Retrieval. Journal of Documentation 63(4), 465–481 (2007)CrossRefGoogle Scholar
  7. 7.
    Setchi, R., Tang, Q.: Concept Indexing Using Ontology and Supervised Machine Learning. Transactions on Engineering, Computing and Technology 19, 221–226 (2007)Google Scholar
  8. 8.
    Köhler, J., Philippi, S., Specht, M., Rüegg, A.: Ontology Based Text Indexing and Querying for the Semantic Web. Knowledge-Based Systems 19(8), 744–754 (2006)CrossRefGoogle Scholar
  9. 9.
    Conesa, J., Storey, V.C., Sugumaran, V.: Improving Web-Query Processing Through Semantic Knowledge. Data and Knowledge Engineering 66, 18–34 (2008)CrossRefGoogle Scholar
  10. 10.
    Gene-Ontology-Consortium. Creating the Gene Ontology Resource: Design and Implementation. Genome Res. 11(8), 1425–1433 (2001)Google Scholar
  11. 11.
    WordNet, http://wordnet.princeton.edu/ (last accessed 24/03/2009)
  12. 12.
    Cyc, http://www.ontotext.com/downloads/CycMDB.html (last accessed 24/03/2009)
  13. 13.
    Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic Annotation, Indexing, 1st Retrieval, Web Semantics. Science, Services and Agents on the World Wide Web 2(1), 49–79 (2004)CrossRefGoogle Scholar
  14. 14.
    Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran, A., Kanungo, K., McCurley, S., Rajagopalan, S., Tomkins, A., Tomlin, J.A., Zien, J.Y.: A Case for Automated Large-Scale Semantic Annotation, Web Semantics. Science, Services and Agents on the World Wide Web 1(1), 115–132 (2003)CrossRefGoogle Scholar
  15. 15.
    Corcho, O.: Ontology Based Document Annotation: Trends and Open Research Problems. International Journal of Metadata, Semantics and Ontologies 1(1), 47–57 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Benjamins, V.R., Contreras, J., Blazquez, M., Dodero, J.M., Garcia, A., Navas, E., Hernandez, F., Wert, C.: Cultural Heritage and the Semantic Web. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 433–444. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Davidson, E. (ed.): Roget’s Thesaurus of English Words and Phrases. Penguin, UK (2003)Google Scholar
  18. 18.
    Salton, G., Buckley, C.: Improving Retrieval Performance by Relevance Feedback. Journal of the American Society for Information Science 41(4), 288–297 (1990)CrossRefGoogle Scholar
  19. 19.
    Gliozzo, A., Strapparava, C., Dagan, I.: Unsupervised and Supervised Exploitation of Semantic Domains in Lexical Disambiguation. Computer Speech and Language 18(3), 275–299 (2004)CrossRefGoogle Scholar
  20. 20.
    Ontology Tagger (June 12, 2008), http://www.trendsproject.org (last accessed 25/03/2009)

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Rossitza Setchi
    • 1
  • Qiao Tang
    • 2
  • Carole Bouchard
    • 3
  1. 1.School of EngineeringCardiff UniversityCardiffUK
  2. 2.Beijing Digital China LimitedBeijingChina
  3. 3.Laboratory of New Product Design and InnovationEcole Nationale, Supérieure des Arts et MétiersParisFrance

Personalised recommendations