Adaptive Forecasting of High-Energy Electron Flux at Geostationary Orbit Using ADALINE Neural Network

  • Masahiro Tokumitsu
  • Yoshiteru Ishida
  • Shinichi Watari
  • Kentarou Kitamura
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5712)


High-energy electron flux increases in the recovery phase after the space weather events such as a coronal mass ejection. High-energy electrons can penetrate circuits deeply and the penetration could lead to deep dielectric charging. The forecast of high-energy electron flux is vital in providing warning information for spacecraft operations. We investigate an adaptive predictor based on ADALINE neural network. The predictor can forecast the trend of the daily variations in high-energy electrons. The predictor was trained with the dataset of ten years from 1998 to 2008. We obtained the prediction efficiency approximately 0.6 each year except the first learning year 1998. Furthermore, the predictor can adapt to the changes for the satellite’s location. Our model succeeded in forecasting the high-energy electron flux 24 hours ahead.


Adaptive Learning Neural Network High-energy Electron Dielectric Charging of Spacecraft Space Weather 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, D.N., Kanekal, S., Blake, J.B., Klecker, B., Rostoker, G.: Satellite anomalies linked to electron increase in the magnetosphere. EOS Transactions 75, 401–405 (1994)CrossRefGoogle Scholar
  2. 2.
    Baker, D.N.: Satellite Anomalies due to Space Storms. In: Daglis, I.A. (ed.) Space Storms and Space Weather Hazards, pp. 285–311 (2001)Google Scholar
  3. 3.
    Liemohn, M.W., Chan, A.A.: Unraveling the Causes of Radiation Belt Enhancements. EOS Transactions 88, 425–426 (2007)CrossRefGoogle Scholar
  4. 4.
    Kataoka, R., Miyoshi, Y.: Flux Enhancement of Radiation Belt Electrons during Geomagnetic Storms Driven by Coronal Mass Ejections and Corotating Interaction Regions. Space Weather 4, S09004 (2004)Google Scholar
  5. 5.
    Baker, D.N., McPherron, R.L., Cayton, T.E., Klebesadel, R.W.: Linear Prediction Filter Analysis of Relativistic Electron Properties at 6.6 Re. J. Geophys. Res. 95(A9), 15133–15140Google Scholar
  6. 6.
    Baker, D.N., Klebesadel, R.W., Higbie, P.R., Blake, J.B.: Highly Relativistic Electrons in the Earth’s Outer Magnetosphere. I - Lifetimes and Temporal History 1979-1984. J. Geophys. Res. 91, 4265–4276 (1986)CrossRefGoogle Scholar
  7. 7.
    Koons, H.C., Gorney, D.J.: A Neural Network Model of the Relativistic Electron Flux at Geosynchronous Orbit. J. Geophys. Res. 96, 5549–5556 (1991)CrossRefGoogle Scholar
  8. 8.
    Ardalani, N., Khoogar, A., Roohi, H.: A Comparison of ADALINE and MLP Neural Network-based Predictors in SIR Estimation in Mobile DS/CDMA Systems. Computing and Technology 9, 145–150 (2005)Google Scholar
  9. 9.
    Fukata, M., Taguchi, S., Okuzawa, T., Obara, T.: Neural network prediction of relativistic electrons at geosynchronous orbit during the storm recovery phase: effects of recurring substorms. Annales Geophysicae 20, 947–951 (2002)CrossRefGoogle Scholar
  10. 10.
    Watari, S., Tokumitsu, M., Kitamura, K., Ishida, Y.: Forecast of High-energy Electron Flux at Geostationary Orbit Using Neural Network. In: The 26th International Symposium on Space Technology and Science, ISTS 2008 (2008)Google Scholar
  11. 11.
    Widrow, B., Lehr, M.A.: Perceptrons, adalines, and backpropagation. The handbook of brain theory and neural networks, 719–724 (1998)Google Scholar
  12. 12.
    Ishida, Y.: Designing an Immunity-Based Sensor Network for Sensor-Based Diagnosis of Automobile Engines. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4252, pp. 146–153. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    King, J.H., Papitashvili, N.E.: Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J. Geophys. Res (Space Physics) 110(A9), A02104 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Masahiro Tokumitsu
    • 1
  • Yoshiteru Ishida
    • 1
  • Shinichi Watari
    • 2
  • Kentarou Kitamura
    • 3
  1. 1.Department of Electronic and Information EngineeringToyohashi University of TechnologyToyohashiJapan
  2. 2.Applied Electromagnetic Research CenterNational Institute of Information and Communications TechnologyTokyoJapan
  3. 3.Department of Mechanical and Electrical EngineeringTokuyama College of TechnologyYamaguchiJapan

Personalised recommendations