Incremental Declarative Process Mining

  • Massimiliano Cattafi
  • Evelina Lamma
  • Fabrizio Riguzzi
  • Sergio Storari
Part of the Studies in Computational Intelligence book series (SCI, volume 260)


Business organizations achieve their mission by performing a number of processes. These span from simple sequences of actions to complex structured sets of activities with complex interrelation among them. The field of Business Processes Management studies how to describe, analyze, preserve and improve processes. In particular the subfield of Process Mining aims at inferring a model of the processes from logs (i.e. the collected records of performed activities). Moreover, processes can change over time to reflect mutated conditions, therefore it is often necessary to update the model. We call this activity Incremental Process Mining. To solve this problem, we modify the process mining system DPML to obtain IPM (Incremental Process Miner), which employs a subset of the \(\mathcal{S}\)CIFF language to represent models and adopts techniques developed in Inductive Logic Programming to perform theory revision. The experimental results show that is more convenient to revise a theory rather than learning a new one from scratch.


Business Processes Process Mining Theory Revision 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dumas, M., Reichert, M., Shan, M.-C. (eds.): BPM 2008. LNCS, vol. 5240. Springer, Heidelberg (2008)Google Scholar
  2. 2.
    van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow mining: A survey of issues and approaches. Data Knowl. Eng. 47(2), 237–267 (2003)CrossRefGoogle Scholar
  3. 3.
    Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent interaction in abductive logic programming: The sciff framework. ACM Trans. Comput. Log. 9(4) (2008)Google Scholar
  4. 4.
    Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: An abductive interpretation for open societies. In: Cappelli, A., Turini, F. (eds.) AI*IA 2003. LNCS (LNAI), vol. 2829. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic programming to process mining. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 132–146. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods. Journal of Logic Programming 19 20, 629–679 (1994)CrossRefGoogle Scholar
  7. 7.
    Raedt, L.D., Dzeroski, S.: First-order jk-clausal theories are pac-learnable. Artif. Intell. 70(1-2), 375–392 (1994)zbMATHCrossRefGoogle Scholar
  8. 8.
    De Raedt, L., Van Laer, W.: Inductive constraint logic. In: Zeugmann, T., Shinohara, T., Jantke, K.P. (eds.) ALT 1995. LNCS (LNAI), vol. 997, Springer, Heidelberg (1995)Google Scholar
  9. 9.
    Esposito, F., Semeraro, G., Fanizzi, N., Ferilli, S.: Multistrategy theory revision: Induction and abduction in inthelex. Machine Learning 38(1-2), 133–156 (2000)zbMATHCrossRefGoogle Scholar
  10. 10.
    Clark, K.L.: Negation as failure. In: Logic and Databases. Plenum Press, New York (1978)Google Scholar
  11. 11.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the Fifth International Conference and Symposium on Logic Programming, pp. 1070–1080 (1988)Google Scholar
  12. 12.
    Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. Journal of the ACM 38(3), 620–650 (1991)zbMATHGoogle Scholar
  13. 13.
    De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning 26(2-3), 99–146 (1997)zbMATHCrossRefGoogle Scholar
  14. 14.
  15. 15.
    Adé, H., Malfait, B., Raedt, L.D.: Ruth: an ilp theory revision system. In: Ras, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS, vol. 869, pp. 336–345. Springer, Heidelberg (1994)Google Scholar
  16. 16.
    Richards, B.L., Mooney, R.J.: Automated refinement of first-order horn-clause domain theories. Machine Learning 19(2), 95–131 (1995)Google Scholar
  17. 17.
    Georgakopoulos, D., Hornick, M.F., Sheth, A.P.: An overview of workflow management: From process modeling to workflow automation infrastructure. Distributed and Parallel Databases 3(2), 119–153 (1995)CrossRefGoogle Scholar
  18. 18.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  19. 19.
    Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)CrossRefGoogle Scholar
  20. 20.
    Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.: Declarative specification and verification of service choreographies. ACM Transactions on The Web (2009)Google Scholar
  22. 22.
    van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  23. 23.
    van Dongen, B.F., van der Aalst, W.M.P.: Multi-phase process mining: Building instance graphs. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 362–376. Springer, Heidelberg (2004)Google Scholar
  24. 24.
    Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing declarative logic-based models from labeled traces. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 344–359. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting inductive logic programming techniques for declarative process mining. In: ToPNoC II 2009. LNCS, vol. 5460, pp. 278–295. Springer, Heidelberg (2009)Google Scholar
  26. 26.
    Apt, K.R., Bezem, M.: Acyclic programs. New Generation Comput. 9(3/4), 335–364 (1991)CrossRefGoogle Scholar
  27. 27.
    Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: Full support for loosely-structured processes. In: 11th IEEE International Enterprise Distributed Object Computing Conference (EDOC 2007), pp. 287–300. IEEE Computer Society Press, Los Alamitos (2007)CrossRefGoogle Scholar
  28. 28.
    Chavez, A., Maes, P.: Kasbah: An agent marketplace for buying and selling goods. In: Proceedings of the First International Conference on the Practical Application of Intelligent Agents and Multi-Agent Technology (PAAM 1996), London, April 1996, pp. 75–90 (1996)Google Scholar
  29. 29.
  30. 30.
    Desel, J., Erwin, T.: Hybrid specifications: looking at workflows from a run-time perspective. Int. J. Computer System Science & Engineering 15(5), 291–302 (2000)Google Scholar
  31. 31.
    Ferreira, H.M., Ferreira, D.R.: An integrated life cycle for workflow management based on learning and planning. Int. J. Cooperative Inf. Syst. 15(4), 485–505 (2006)CrossRefGoogle Scholar
  32. 32.
    Goedertier, S.: Declarative techniques for modeling and mining business processes. PhD thesis, Katholieke Universiteit Leuven, Faculteit Economie en Bedrijfswetenschappen (2008)Google Scholar
  33. 33.
    Wrobel, S.: First order theory refinement. In: Raedt, L.D. (ed.) Advances in Inductive Logic Programming, pp. 14–33. IOS Press, Amsterdam (1996)Google Scholar
  34. 34.
    Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware information systems. T. Petri Nets and Other Models of Concurrency 2, 115–135 (2009)CrossRefGoogle Scholar
  35. 35.
    Mutschler, B., Reichert, M., Rinderle, S.: Analyzing the dynamic cost factors of process-aware information systems: A model-based approach. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 589–603. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Massimiliano Cattafi
    • 1
  • Evelina Lamma
    • 1
  • Fabrizio Riguzzi
    • 1
  • Sergio Storari
    • 1
  1. 1.ENDIFUniversità di FerraraFerraraItaly

Personalised recommendations