Four Lessons in Versatility or How Query Languages Adapt to the Web

  • François Bry
  • Tim Furche
  • Benedikt Linse
  • Alexander Pohl
  • Antonius Weinzierl
  • Olga Yestekhina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5500)


Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity.

With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs.

We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”.


Query Language Query Term Conjunctive Query SPARQL Query Triple Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: from relations to semistructured data and XML. Morgan Kaufmann Publishers Inc., San Francisco (2000)Google Scholar
  2. 2.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley Publishing Co., Boston (1995)zbMATHGoogle Scholar
  3. 3.
    Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wienerm, J.L.: The Lorel Query Language for Semistructured Data. Intl. Journal on Digital Libraries 1(1), 68–88 (1997)CrossRefGoogle Scholar
  4. 4.
    Adida, B.: hGRDDL: Bridging microformats and RDFa. J. Web Sem. 6(1), 54–60 (2008)CrossRefGoogle Scholar
  5. 5.
    Adida, B., Birbeck, M.: RDFa primer 1.0 embedding RDF in XHTML. W3c working draft, W3C (October 2007)Google Scholar
  6. 6.
    Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive relationships in large data and knowledge bases. In: Proc. ACM Symp. on Management of Data (SIGMOD), pp. 253–262. ACM, New York (1989)Google Scholar
  7. 7.
    Akhtar, W., Kopecky, J., Krennwallner, T., Polleres, A.: XSPARQL: Traveling between the XML and RDF worlds – and avoiding the XSLT pilgrimage. In: Hauswirth, M., Koubarakis, M., Bechhofer, S. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 432–447. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Al-Khalifa, S., Jagadish, H.V., Koudas, N., Patel, J.M., Srivastava, D., Wu, Y.: Structural Joins: A Primitive for Efficient XML Query Pattern Matching. In: Proc. Int. Conf. on Data Engineering, Washington, DC, USA, p. 141. IEEE Computer Society, Los Alamitos (2002)CrossRefGoogle Scholar
  9. 9.
    Apple Inc.: plist — Property List Format (2003)Google Scholar
  10. 10.
    Apt, K.R., Bol, R.N.: Logic programming and negation: A survey. J. Log. Program. 19(20), 9–71 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Assmann, U., et al.: Modular web queries — from rules to stores. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2007, Part I. LNCS, vol. 4805, Springer, Heidelberg (2007)Google Scholar
  12. 12.
    Augurusa, E., Braga, D., Campi, A., Ceri, S.: Design and implementation of a graphical interface to XQuery. In: SAC 2003: Proceedings of the 2003 ACM symposium on Applied computing, pp. 1163–1167. ACM, New York (2003)Google Scholar
  13. 13.
    Backett, D.: Turtle—Terse RDF Triple Language. Technical report, Institute for Learning and Research Technology, University of Bristol (2007)Google Scholar
  14. 14.
    Bailey, J., Bry, F., Furche, T., Schaffert, S.: Web and semantic web query languages: A survey. In: Eisinger, N., Małuszyński, J. (eds.) Reasoning Web 2005. LNCS, vol. 3564, pp. 35–133. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Beckett, D., McBride, B.: RDF/XML Syntax Specification (Revised). Recommendation, W3C (2004)Google Scholar
  16. 16.
    Benedikt, M., Koch, C.: Xpath leashed. ACM Computing Surveys (2007)Google Scholar
  17. 17.
    Berger, S., Bry, F., Bolzer, O., Furche, T., Schaffert, S., Wieser, C.: Xcerpt and visxcerpt: Twin query languages for the semantic web. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298. Springer, Heidelberg (2004)Google Scholar
  18. 18.
    Björklund, H., Martens, W., Schwentick, T.: Conjunctive query containment over trees. In: Arenas, M., Schwartzbach, M.I. (eds.) DBPL 2007. LNCS, vol. 4797, pp. 66–80. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Boag, S., Berglund, A., Chamberlin, D., Siméon, J., Kay, M., Robie, J., Fernández, M.F.: XML path language (XPath) 2.0. W3C recommendation, W3C (January 2007),
  20. 20.
    Bolzer, O.: Towards Data-Integration on the Semantic Web: Querying RDF with Xcerpt. Diplomarbeit/diploma thesis, University of Munich (2005)Google Scholar
  21. 21.
    Bolzer, O.: Towards data-integration on the semantic web: Querying RDF with Xcerpt. Diplomarbeit/diploma thesis, Institute of Computer Science, LMU, Munich (2005)Google Scholar
  22. 22.
    Boncz, P., et al.: MonetDB/XQuery: a fast XQuery Processor powered by a Relational Engine. In: Proc. ACM Symp. on Management of Data (SIGMOD), pp. 479–490. ACM Press, New York (2006)Google Scholar
  23. 23.
    Bonifati, A., Ceri, S.: Comparative analysis of five xml query languages. SIGMOD Rec. 29(1), 68–79 (2000)CrossRefGoogle Scholar
  24. 24.
    Booth, K.S., Lueker, G.S.: Linear Algorithms to Recognize Interval Graphs and Test for the Consecutive Ones Property. In: Proc. of ACM Symposium on Theory of Computing, pp. 255–265. ACM Press, New York (1975)Google Scholar
  25. 25.
    Bray, T., Hollander, D., Layman, A., Tobin, R.: Namespaces in XML 1.0 (2nd edn.). W3C Rec. (August 16, 2006)Google Scholar
  26. 26.
    Bray, T., Hollander, D., Layman, A., Tobin, R.: Namespaces in XML (2nd edn.). Recommendation, W3C (2006)Google Scholar
  27. 27.
    Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible markup language (XML) 1.0 (4th edn.) (2006)Google Scholar
  28. 28.
    Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible Markup Language (XML) 1.0 (3rd edn.). Recommendation, W3C (2004)Google Scholar
  29. 29.
    Broekstra, Kampman, Harmelen: Sesame: A generic architecture for storing and querying RDF and RDF Schema (2003)Google Scholar
  30. 30.
    Bruno, N., Koudas, N., Srivastava, D.: Holistic Twig Joins: Optimal XML Pattern Matching. In: Proc. ACM SIGMOD Int. Conf. on Management of Data, pp. 310–321. ACM Press, New York (2002)Google Scholar
  31. 31.
    Bry, F., et al.: Foundations of rule-based query answering. In: Antoniou, G., et al. (eds.) Reasoning Web. LNCS, vol. 4636, pp. 1–153. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  32. 32.
    Bry, F., Furche, T., Badea, L., Koch, C., Schaffert, S., Berger, S.: Querying the web reconsidered: Design principles for versatile web query languages. Journal of Semantic Web and Information Systems (IJSWIS) 1(2) (2005)Google Scholar
  33. 33.
    Bry, F., Furche, T., Ley, C., Linse, B.: RDFLog—taming existence - a logic-based query language for RDF (2007)Google Scholar
  34. 34.
    Bry, F., Furche, T., Ley, C., Linse, B., Marnette, B.: RDFLog: It’s like datalog for RDF. In: Proceedings of 22nd Workshop on (Constraint) Logic Programming, Dresden, 30 September–1 October (2008)Google Scholar
  35. 35.
    Bry, F., Furche, T., Linse, B.: Simulation subsumption or déjà vu on the web (extended version). Technical Report PMS-FB-2008-01, University of Munich (2007)Google Scholar
  36. 36.
    Bry, F., Furche, T., Linse, B., Schroeder, A.: Efficient Evaluation of n-ary Conjunctive Queries over Trees and Graphs. In: Proc. ACM Int’l. Workshop on Web Information and Data Management (WIDM). ACM Press, New York (2006), 2 citations [Google Scholar]Google Scholar
  37. 37.
    Bry, F., Coskun, F., Durmaz, S., Furche, T., Olteanu, D., Spannagel, M.: The XML Stream Query Processor SPEX. In: Proc. Int’l. Conf. on Data Engineering (ICDE), pp. 1120–1121 (2005), 17 citations [Google Scholar]Google Scholar
  38. 38.
    Bry, F., Furche, T., Ley, C., Linse, B.: Rdflog: Filling in the blanks in rdf querying. Technical Report PMS-FB-2008-01, University of Munich (2007)Google Scholar
  39. 39.
    Bry, F., Furche, T., Ley, C., Linse, B., Marnette, B.: Taming existence in rdf querying. In: Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 236–237. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  40. 40.
    Bry, F., Schaffert, S.: A Gentle Introduction into Xcerpt, a Rule-based Query and Transformation Language for XML. In: Proc. Intl. Workshop on Rule Markup Languages for Business Rules on the Semantic Web (2002)Google Scholar
  41. 41.
    Buneman, P., Fernandez, M.F., Suciu, D.: UnQL: a query language and algebra for semistructured data based on structural recursion. VLDB Journal: Very Large Data Bases 9(1), 76–110 (2000)CrossRefGoogle Scholar
  42. 42.
    Bussche, J.V.D., Gucht, D.V., Andries, M., Gyssens, M.: On the completeness of object-creating database transformation languages. Journal of the ACM 44(2), 272–319 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Cabibbo, L.: The expressive power of stratified logic programs with value invention. Information and Computation 147(1), 22–56 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Carlos, J., Polleres, A., Polleres, A.: Sparql rules. Technical report, Universidad Rey Juan Carlos (2006)Google Scholar
  45. 45.
    Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and trust. In: WWW 2005: Proceedings of the 14th international conference on World Wide Web, pp. 613–622. ACM, New York (2005)Google Scholar
  46. 46.
    Ceri, S., Comai, S., Damiani, E., Fraternali, P., Paraboschi, S., Tanca, L.: XML-GL: a graphical language for querying and restructuring XML documents (1998)Google Scholar
  47. 47.
    Chamberlin, D.D., Robie, J., Florescu, D.: Quilt: An XML query language for heterogeneous data sources. In: Suciu, D., Vossen, G. (eds.) WebDB 2000. LNCS, vol. 1997, pp. 1–25. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  48. 48.
    Chen, L., Gupta, A., Kurul, M.E.: Stack-based algorithms for pattern matching on dags. In: Proc. Int’l. Conf. on Very Large Data Bases (VLDB), pp. 493–504. VLDB Endowment (2005)Google Scholar
  49. 49.
    Chen, T., Lu, J., Ling, T.W.: On Boosting Holism in XML Twig Pattern Matching using Structural Indexing Techniques. In: Proc. ACM SIGMOD Int. Conf. on Management of Data, pp. 455–466. ACM Press, New York (2005)Google Scholar
  50. 50.
    Chen, W., Warren, D.S.: Tabled evaluation with delaying for general logic programs. J. ACM 43(1), 20–74 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Chen, Z., Gehrke, J., Korn, F., Koudas, N., Shanmugasundaram, J., Srivastava, D.: Index structures for matching XML twigs using relational query processors. Data & Knowledge Engineering (DKE) 60(2), 283–302 (2007)CrossRefGoogle Scholar
  52. 52.
    Cholak, P., Blair, H.A.: The complexity of local stratification. Fundam. Inform. 21(4), 333–344 (1994)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and Distance Queries via 2-hop Labels. In: Proc. ACM Symposium on Discrete Algorithms, Philadelphia, PA, USA, pp. 937–946. Society for Industrial and Applied Mathematics (2002)Google Scholar
  54. 54.
    Connolly, D.: Gleaning resource descriptions from dialects of languages (grddl). Recommendation, W3C (2007)Google Scholar
  55. 55.
    Cooper, B., Sample, N., Franklin, M.J., Hjaltason, G.R., Shadmon, M.: A Fast Index for Semistructured Data. In: Proc. Int. Conf. on Very Large Databases, pp. 341–350. Morgan Kaufmann Publishers Inc., San Francisco (2001)Google Scholar
  56. 56.
    Cowan, J., Tobin, R.: XML Information Set (2 edn.). Recommendation, W3C (2004)Google Scholar
  57. 57.
    Davis, I.: GRDDL primer (2006)Google Scholar
  58. 58.
    Deutsch, A., Fernández, M.F., Florescu, D., Levy, A.Y., Suciu, D.: XML-QL. In: QL (1998)Google Scholar
  59. 59.
    Dijkstra, E.W.: On the role of scientific thought (EWD447). In: Selected Writings on Computing: A Personal Perspective, pp. 60–66 (1982)Google Scholar
  60. 60.
    Droop, M., Flarer, M., Groppe, J., Groppe, S., Linnemann, V., Pinggera, J., Santner, F., Schier, M., Schöpf, F., Staffler, H., Zugal, S.: Translating xpath queries into sparql queries. In: On the Move (OTM 2007) Federated Conferences and Workshops (DOA, ODBASE, CoopIS, GADA, IS), 6th International Conference on Ontologies, DataBases, and Applications of Semantics (ODBASE 2007), pp. 9–10 (2007)Google Scholar
  61. 61.
    Eiter, T., Faber, W., Koch, C., Leone, N., Pfeifer, G.: DLV - a system for declarative problem solving. In: Proceedings of the 8th International Workshop on Non-Monotonic Reasoning (NMR 2000) (2000)Google Scholar
  62. 62.
    Eiter, T., Ianni, G., Krennwallner, T., Schindlauer, R.: Exploiting conjunctive queries in description logic programs. In: Choueiry, B.Y., Givan, B. (eds.) Informal Proceedings of the 10th International Symposium on Artificial Intelligence and Mathematics (ISAIM 2008), Ft. Lauderdale, Florida, January 2-4 (2008) (to appear) (invited paper)Google Scholar
  63. 63.
    Euzenat, J., Valtchev, P.: An integrative proximity measure for ontology alignment. In: Doan, A., Halevy, A., Noy, N. (eds.) Proceedings of the 1st Intl. Workshop on Semantic Integration. CEUR, vol. 82 (2003)Google Scholar
  64. 64.
    Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in OWL-lite. In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the 16th European Conference on Artificial Intelligence (ECAI 2004), pp. 333–337. IOS Press, Amsterdam (2004)Google Scholar
  65. 65.
    Fagin, R.: Multivalued dependencies and a new normal form for relational databases. ACM Transactions on Database Systems 2(3), 262–278 (1977)CrossRefGoogle Scholar
  66. 66.
    Fallside, D.C., Walmsley, P.: XML Schema Part 0: Primer Second edn. Recommendation, W3C (2004)Google Scholar
  67. 67.
    Fernández, M., Malhotra, A., Marsh, J., Nagy, M., Walsh, N.: XQuery 1.0 and XPath 2.0 Data Model. Recommendation, W3C (2007)Google Scholar
  68. 68.
    Fulkerson, D.R., Gross, O.A.: Incidence Matrices and Interval Graphs. Pacific Journal of Mathematics 15(3), 835–855 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Furche, T.: Implementation of Web Query Language Reconsidered: Beyond Tree and Single-Language Algebras at (Almost) No Cost. Dissertation/doctoral thesis, Ludwig-Maxmilians University Munich (2008)Google Scholar
  70. 70.
    Furche, T., Linse, B., Bry, F., Plexousakis, D., Gottlob, G.: RDF querying: Language constructs and evaluation methods compared. In: Barahona, P., Bry, F., Franconi, E., Henze, N., Sattler, U. (eds.) Reasoning Web 2006. LNCS, vol. 4126, pp. 1–52. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  71. 71.
    Furche, T., Weinzierl, A., Bry, F.: Scalable, space-optimal implementation of xcerpt single rule programs—part 1: Data model, queries, and translation. Deliverable I4-D15a, REWERSE (2007)Google Scholar
  72. 72.
    Gandon, F.: GRDDL use cases: Scenarios of extracting RDF data from XML documents. W3c working group note 6 April 2007, W3C (2007)Google Scholar
  73. 73.
    Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete Book. Prentice Hall, Englewood Cliffs (2002)Google Scholar
  74. 74.
    Garshol, L.M., Moore, G.: ISO 13250-2: Topic Maps — Data Model. International standard, ISO/IEC (2006)Google Scholar
  75. 75.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceeding of the Fifth Logic Programming Symposium, pp. 1070–1080 (1988)Google Scholar
  76. 76.
    Goldman, R., Widom, J.: Dataguides: Enabling query formulation and optimization in semistructured databases. In: Proc. Int’l. Conf. on Very Large Data Bases (VLDB), pp. 436–445. Morgan Kaufmann Publishers Inc., San Francisco (1997)Google Scholar
  77. 77.
    Gottlob, G., Koch, C., Pichler, R.: Efficient Algorithms for Processing XPath Queries. ACM Transactions on Database Systems (2005)Google Scholar
  78. 78.
    Gottlob, G., Leone, N., Scarcello, F.: The Complexity of Acyclic Conjunctive Queries. Journal of the ACM 48(3), 431–498 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    Groppe, S., Groppe, J., Linnemann, V., Kukulenz, D., Hoeller, N., Reinke, C.: Embedding sparql into xquery/xslt. In: SAC 2008: Proceedings of the 2008 ACM symposium on Applied computing, pp. 2271–2278. ACM, New York (2008)CrossRefGoogle Scholar
  80. 80.
    Grust, T.: Accelerating XPath Location Steps. In: Proc. ACM Symp. on Management of Data (SIGMOD) (2002)Google Scholar
  81. 81.
    Grust, T., Keulen, M.V., Teubner, J.: Accelerating XPath Evaluation in any RDBMS. ACM Transactions on Database Systems 29(1), 91–131 (2004)CrossRefGoogle Scholar
  82. 82.
    Grust, T., Teubner, J.: Relational Algebra: Mother Tongue - XQuery: Fluent. In: Proc. Twente Data Management Workshop on XML Databases and Information Retrieval (2004)Google Scholar
  83. 83.
    Grust, T., van Keulen, M., Teubner, J.: Staircase Join: Teach A Relational DBMS to Watch its (Axis) Steps. In: Proc. Int. Conf. on Very Large Databases (2003)Google Scholar
  84. 84.
    Habib, M., McConnell, R., Paul, C., Viennot, L.: Lex-BFS and Partition Refinement, with Applications to Transitive Orientation, Interval Graph Recognition and Consecutive Ones Testing. Theoretical Computer Science 234(1-2), 59–84 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    Hayes, P., McBride, B.: Rdf semantics. Recommendation, W3C (2004)Google Scholar
  86. 86.
    Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite graphs. In: FOCS, pp. 453–462 (1995)Google Scholar
  87. 87.
    Hsu, W.L.: PC-Trees vs. PQ-Trees. In: Wang, J. (ed.) COCOON 2001. LNCS, vol. 2108, p. 207. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  88. 88.
    Hsu, W.L.: A Simple Test for the Consecutive Ones Property. Journal of Algorithms 43(1), 1–16 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  89. 89.
    Hull, R., Yoshikawa, M.: Ilog: Declarative creation and manipulation of object identifiers. In: Proc. Int’l. Conf. on Very Large Data Bases (VLDB), pp. 455–468. Morgan Kaufmann Publishers Inc., San Francisco (1990)Google Scholar
  90. 90.
    Jagadish, H.V., Lakshmanan, L.V.S., Srivastava, D., Thompson, K.: TAX: A Tree Algebra for XML. In: Ghelli, G., Grahne, G. (eds.) DBPL 2001. LNCS, vol. 2397, p. 149. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  91. 91.
    Jenner, B., Köbler, J., McKenzie, P., Torán, J.: Completeness results for graph isomorphism. Journal of Computer and System Sciences 66(3), 549–566 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  92. 92.
    Karvounarakis, G., Magkanaraki, A., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M., Tolle, K.: RQL: A functional query language for RDF. In: Gray, P.M.D., Kerschberg, L., King, P.J.H., Poulovassilis, A. (eds.) The Functional Approach to Data Management: Modelling, Analyzing and Integrating Heterogeneous Data. LNCS, pp. 435–465. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  93. 93.
    Kay, M.: Parsing in functional unification grammar. In: Dowty, D., Karttunen, L., Zwicky, A. (eds.) Natural Language Parsing: Psychological, Computational, and Theoretical Perspectives, pp. 251–278. Cambridge University Press, Cambridge (1985)CrossRefGoogle Scholar
  94. 94.
    Kay, M.: Functional unification grammar: A formalism for machine translation. In: COLING 1984, Stanford, CA, pp. 75–78 (1984)Google Scholar
  95. 95.
    Kay, M.: XSL Transformations, Version 2.0. Recommendation, W3C (2007)Google Scholar
  96. 96.
    Kay, M.: XSL transformations (XSLT) version 2.0. W3C recommendation, W3C (January 2007),
  97. 97.
    Khare, R.: Microformats: The next (small) thing on the semantic web? IEEE Internet Computing 10(1), 68–75 (2006)CrossRefGoogle Scholar
  98. 98.
    Khare, R., Çelik, T.: Microformats: a pragmatic path to the semantic web. In: WWW 2006: Proceedings of the 15th international conference on World Wide Web, pp. 865–866. ACM Press, New York (2006)Google Scholar
  99. 99.
    Klaas, V.: Who’s who in the world wide web: Approaches to name disambiguation. Diplomarbeit/diploma thesis, Institute of Computer Science, LMU, Munich (2007)Google Scholar
  100. 100.
    Klug, A.C.: On conjunctive queries containing inequalities. J. ACM 35(1), 146–160 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  101. 101.
    Klyne, G., Carroll, J.J., McBride, B.: Resource Description Framework (RDF): Concepts and Abstract Syntax. Recommendation, W3C (2004)Google Scholar
  102. 102.
    Knoblock, C.A., Minton, S., Ambite, J.L., Ashish, N., Modi, P.J., Muslea, I., Philpot, A., Tejada, S.: Modeling web sources for information integration. In: AAAI/IAAI, pp. 211–218 (1998)Google Scholar
  103. 103.
    Koch, C.: On the Complexity of Nonrecursive XQuery and Functional Query Languages on Complex Values. Tods 31(4) (2006)Google Scholar
  104. 104.
    Kochut, K., Janik, M.: SPARQLeR: Extended SPARQL for semantic association discovery. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 145–159. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  105. 105.
    Kolaitis, P.G., Papadimitriou, C.H.: Why not negation by fixpoint? In: PODS, pp. 231–239. ACM, New York (1988)Google Scholar
  106. 106.
    Lenzerini, M.: Data integration: A theoretical perspective (2002)Google Scholar
  107. 107.
    Manola, F., Miller, E.: RDF primer, W3C recommendation. Technical report, W3C (2004)Google Scholar
  108. 108.
    Manola, F., Miller, E., McBride, B.: Rdf primer. Recommendation, W3C (2004)Google Scholar
  109. 109.
    Marsh, J.: XML Base. Recommendation, W3C (2001)Google Scholar
  110. 110.
    Martínez, J.M.: Mpeg-7 overview. Technical Report ISO/IEC JTC1/SC29/WG11N6828, International Organisation for Standardisation (ISO) (2004)Google Scholar
  111. 111.
    Marx, M.: Conditional XPath, the first order complete XPath dialect. In: Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp. 13–22. ACM, New York (2004)CrossRefGoogle Scholar
  112. 112.
    Marx, M.: Conditional XPath. ACM Transactions on Database Systems (TODS) 30(4), 929–959 (2005)CrossRefGoogle Scholar
  113. 113.
    McBride, B.: Rdf vocabulary description language 1.0: Rdf schema (2004)Google Scholar
  114. 114.
    Meuss, H., Schulz, K.U.: Complete Answer Aggregates for Treelike Databases: A Novel Approach to Combine Querying and Navigation. ACM Transactions on Information Systems 19(2), 161–215 (2001)CrossRefGoogle Scholar
  115. 115.
    Meuss, H., Schulz, K.U., Bry, F.: Towards Aggregated Answers for Semistructured Data. In: Proc. Intl. Conf. on Database Theory, pp. 346–360. Springer, Heidelberg (2001)Google Scholar
  116. 116.
    Milner, R.: An algebraic definition of simulation between programs. In: IJCAI, pp. 481–489 (1971)Google Scholar
  117. 117.
    Noy, N.F., Musen, M.A.: PROMPT: Algorithm and tool for automated ontology merging and alignment. In: AAAI/IAAI, pp. 450–455 (2000)Google Scholar
  118. 118.
    Olteanu, D.: SPEX: Streamed and Progressive Evaluation of XPath. IEEE Transactions on Knowledge and Data Engineering (2007)Google Scholar
  119. 119.
    Olteanu, D., Furche, T., Bry, F.: Evaluating Complex Queries against XML streams with Polynomial Combined Complexity. In: Williams, H., MacKinnon, L.M. (eds.) BNCOD 2004. LNCS, vol. 3112, pp. 31–44. Springer, Heidelberg (2004) 17 citations [Google Scholar]CrossRefGoogle Scholar
  120. 120.
    Olteanu, D., Furche, T., Bry, F.: An Efficient Single-Pass Query Evaluator for XML Data Streams. In: Data Streams Track, Proc. ACM Symp. on Applied Computing (SAC), pp. 627–631 (2004) 17 citations [Google Scholar]Google Scholar
  121. 121.
    Olteanu, D., Meuss, H., Furche, T., Bry, F.: Xpath: Looking forward. In: Chaudhri, A.B., Unland, R., Djeraba, C., Lindner, W. (eds.) EDBT 2002, vol. 2490, pp. 109–127. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  122. 122.
    O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., Westbury, N.: ORDPATHs: Insert-friendly XML Node Labels. In: Proc. ACM Symp. on Management of Data (SIGMOD), pp. 903–908. ACM Press, New York (2004)Google Scholar
  123. 123.
    Pepper, S.: The TAO of topic maps (2000)Google Scholar
  124. 124.
    Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. In: Cruz, I.F., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  125. 125.
    Pérez, J., Arenas, M., Gutierrez, C.: nSPARQL: A navigational language for RDF. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.W., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 66–81. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  126. 126.
    Pérez, J., Arenas, M., Gutierrez, C.: nSPARQL: A navigational language for rdf. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 66–81. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  127. 127.
    Polleres, A.: From sparql to rules (and back). In: Williamson, C.L., Zurko, M.E., Patel-Schneider, P.F., Shenoy, P.J. (eds.) WWW, pp. 787–796. ACM, New York (2007)CrossRefGoogle Scholar
  128. 128.
    Polleres, A., Krennwallner, T., Kopecky, J., Akhtar, W.: Xsparql: Traveling between the XML and rdf worlds – and avoiding the xslt pilgrimage. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 432–447. Springer, Heidelberg (2008)Google Scholar
  129. 129.
    Przymusinska, H., Przymunsinski, T.C.: Weakly stratified logic programs. Fundam. Inf. 13(1), 51–65 (1990)MathSciNetzbMATHGoogle Scholar
  130. 130.
    Przymusinski, T.C.: On the declarative semantics of deductive databases and logic programs. In: Foundations of Deductive Databases and Logic Programming, pp. 193–216. Morgan Kaufmann, San Francisco (1988)CrossRefGoogle Scholar
  131. 131.
    Recordon, D., Reed, D.: OpenID 2.0: a platform for user-centric identity management. In: DIM 2006: Proceedings of the second ACM workshop on Digital identity management, pp. 11–16. ACM, New York (2006)CrossRefGoogle Scholar
  132. 132.
    Ross, K.A.: Modular stratification and magic sets for DATALOG programs with negation. In: PODS, pp. 161–171. ACM Press, New York (1990)CrossRefGoogle Scholar
  133. 133.
    Sagonas, K.F., Swift, T., Warren, D.S.: The XSB programming system. In: Workshop on Programming with Logic Databases (Informal Proceedings), ILPS, p. 164 (1993)Google Scholar
  134. 134.
    Schaffert, S.: Xcerpt: A Rule-Based Query and Transformation Language for the Web. PhD thesis, University of Munich (2004)Google Scholar
  135. 135.
    Schaffert, S.: Xcerpt: A Rule-Based Query and Transformation Language for the Web. Dissertation/doctoral thesis, University of Munich (2004)Google Scholar
  136. 136.
    Schenk, S., Staab, S.: Networked graphs: A declarative mechanism for sparql rules, sparql views and rdf data integration on the web. In: Proceedings of the 17th International World Wide Web Conference, Bejing, China (2008-04)Google Scholar
  137. 137.
    Schenkel, R., Theobald, A., Weikum, G.: HOPI: An Efficient Connection Index for Complex XML Document Collections. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 237–255. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  138. 138.
    Schneider, P.P., Simeon, J.: The yin/yang web: Xml syntax and rdf semantics. In: Proceedings of the eleventh international conference on World Wide Web, p. 11. ACM Press, New York (2002)Google Scholar
  139. 139.
    Schwentick, T.: Xpath query containment. SIGMOD Record 33(1), 101–109 (2004)CrossRefGoogle Scholar
  140. 140.
    Seaborne, A., Manjunath, G., Bizer, C., Breslin, J., Das, S., Davis, I., Harris, S., Idehen, K., Corby, O., Kjernsmo, K., Nowack, B.: SPARQL/Update A language for updating RDF graphs. W3C Member Submission, W3C (July 2008),
  141. 141.
    Seaborne, A., Prud’hommeaux, E.: SPARQL query language for RDF. W3C recommendation, W3C (January 2008),
  142. 142.
    Siméon, J., Chamberlin, D., Florescu, D., Boag, S., Fernández, M.F., Robie, J.: XQuery 1.0: An XML query language. W3C recommendation, W3C (January 2007),
  143. 143.
    Stickler, P.: Cbd - concise bounded description (2005)Google Scholar
  144. 144.
    Tamaki, H., Sato, T.: OLD resolution with tabulation. In: Shapiro, E.Y. (ed.) ICLP 1986. LNCS, vol. 225, pp. 84–98. Springer, Heidelberg (1986)CrossRefGoogle Scholar
  145. 145.
    Trißl, S., Leser, U.: Fast and practical indexing and querying of very large graphs. In: Proc. ACM Symp. on Management of Data (SIGMOD), pp. 845–856. ACM, New York (2007)Google Scholar
  146. 146.
    Ullman, J.D.: Information integration using logical views. Theor. Comput. Sci. 239(2), 189–210 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  147. 147.
    van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs. Journal of the ACM 18, 620–650 (1991)MathSciNetzbMATHGoogle Scholar
  148. 148.
    van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. Journal of the ACM (1991)Google Scholar
  149. 149.
    W3C: Gleaning resource descriptions from dialects of languages (GRDDL). W3c recommendation, W3C (September 2007)Google Scholar
  150. 150.
    Walsh, N., Muellner, L.: DocBook: The Definitive Guide. O’Reilly, Sebastopol (1999)Google Scholar
  151. 151.
    Wang, H., He, H., Yang, J., Yu, P.S., Yu, J.X.: Dual labeling: Answering graph reachability queries in constant time. In: Proc. Int’l. Conf. on Data Engineering (ICDE), Washington, DC, USA, IEEE Computer Society (2006)  75Google Scholar
  152. 152.
    Wei, F., Lausen, G.: Containment of conjunctive queries with safe negation. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 343–357. Springer, Heidelberg (2003)Google Scholar
  153. 153.
    Weigel, F., Schulz, K.U., Meuss, H.: The bird numbering scheme for xml and tree databases – deciding and reconstructing tree relations using efficient arithmetic operations. In: Bressan, S., Ceri, S., Hunt, E., Ives, Z.G., Bellahsène, Z., Rys, M., Unland, R. (eds.) XSym 2005. LNCS, vol. 3671, pp. 49–67. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • François Bry
    • 1
  • Tim Furche
    • 1
  • Benedikt Linse
    • 1
  • Alexander Pohl
    • 1
  • Antonius Weinzierl
    • 1
  • Olga Yestekhina
    • 1
  1. 1.Institute for InformaticsUniversity of MunichMünchenGermany

Personalised recommendations