Hybrid Reasoning with Rules and Ontologies

  • Włodzimierz Drabent
  • Thomas Eiter
  • Giovambattista Ianni
  • Thomas Krennwallner
  • Thomas Lukasiewicz
  • Jan Małuszyński
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5500)

Abstract

The purpose of this chapter is to report on work that has been done in the REWERSE project concerning hybrid reasoning with rules and ontologies. Two major streams of work have been pursued within REWERSE. They start from the predominant semantics of non-monotonic rules in logic programming. The one stream was an extension of non-monotonic logic programs under answer set semantics, with query interfaces to external knowledge sources. The other stream, in the spirit of the \(\mathcal{AL}\)-log approach of enhanced deductive databases, was an extension of Datalog (with the well-founded semantics, which is predominant in the database area). The former stream led to so-called non-monotonic dl-programs and hex-programs, and the latter stream to hybrid well-founded semantics. Further variants and derivations of the formalisms (like a well-founded semantics for dl-programs, respecting probabilistic knowledge, priorities, etc.) have been conceived.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Analyti, A., Antoniou, G., Damásio, C.V., Wagner, G.: Stable model theory for extended RDF ontologies. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 21–36. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Antoniou, G., Maher, M., Billington, D.: Defeasible Logic versus Logic Programming. Journal of Logic Programming 41(1), 45–57 (2000)MATHGoogle Scholar
  3. 3.
    Antoniou, G., Bikakis, A.: DR-Prolog: A system for defeasible reasoning with rules and ontologies on the Semantic Web. IEEE Trans. Knowl. Data Eng. 19(2), 233–245 (2007)CrossRefGoogle Scholar
  4. 4.
    Antoniou, G., Damásio, C.V., Grosof, B., Horrocks, I., Kifer, M., Maluszynski, J., Patel-Schneider, P.F.: Combining rules and ontologies. A survey. FP6 NoE REWERSE, Deliverable I3-D3, http://rewerse.net/deliverables/m12/i3-d3.pdf
  5. 5.
    Apt, K.R., Bol, R.N.: Logic programming and negation: A survey. J. Log. Program. 19(20), 9–71 (1994)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, IJCAI 2005, Edinburgh, UK. Morgan-Kaufmann Publishers, San Francisco (2005)Google Scholar
  7. 7.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope further. In: Clark, K., Patel-Schneider, P.F. (eds.) Proceedings of the OWLED 2008 DC Workshop on OWL: Experiences and Directions (2008)Google Scholar
  8. 8.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press, Cambridge (2007)MATHGoogle Scholar
  9. 9.
    Baader, F., Hollunder, B.: Embedding Defaults into Terminological Knowledge Representation Formalisms. Journal of Automated Reasoning 14(1), 149–180 (1995)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)CrossRefMATHGoogle Scholar
  11. 11.
    Baral, C., Gelfond, M.: Logic Programming and Knowledge Representation. Journal of Logic Programming 19(20), 73–148 (1994)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Boley, H., Kifer, M. (eds.): RIF Basic Logic Dialect, W3C Working Draft (July 2008), http://www.w3.org/TR/2008/WD-rif-bld-20080730/
  13. 13.
    Boley, H., Kifer, M., Pătrânjan, P.L., Polleres, A.: Rule interchange on the web. In: Antoniou, G., Aßmann, U., Baroglio, C., Decker, S., Henze, N., Patranjan, P.-L., Tolksdorf, R. (eds.) Reasoning Web 2007. LNCS, vol. 4636, pp. 269–309. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Bonatti, P., Baselice, S.: Composing normal programs with function symbols. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 425–439. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Bonatti, P.A.: Reasoning with infinite stable models. Artificial Intelligence 156(1), 75–111 (2004)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Bonatti, P.A., Eiter, T., Faella, M.: Advanced Policy Queries. REWERSE Deliverable I2-D6, Dipartimento di Scienze Fisiche - Sezione di Informatica, University of Naples “Federico II” (2006)Google Scholar
  17. 17.
    Buccafurri, F., Leone, N., Rullo, P.: Strong and Weak Constraints in Disjunctive Datalog. In: Dix, J., Furbach, U., Nerode, A. (eds.) LPNMR 1997. LNCS (LNAI), vol. 1265, pp. 2–17. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  18. 18.
    Calì, A., Lukasiewicz, T.: Tightly integrated probabilistic description logic programs for the Semantic Web. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 428–429. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Calì, A., Lukasiewicz, T.: An approach to probabilistic data integration for the Semantic Web. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 - 2007. LNCS, vol. 5327, pp. 52–65. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Calì, A., Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: Rule-based approaches for representing probabilistic ontology mappings. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 - 2007. LNCS, vol. 5327, pp. 66–87. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Calì, A., Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: Tightly integrated probabilistic description logic programs for representing ontology mappings. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS 2008. LNCS, vol. 4932, pp. 178–198. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Calì, A., Lukasiewicz, T., Predoiu, L., Stuckenschmidt, H.: Tightly coupled probabilistic description logic programs for the Semantic Web. In: Journal on Data Semantics XII (2009)Google Scholar
  23. 23.
    Calimeri, F., Cozza, S., Ianni, G.: External sources of knowledge and value invention in logic programming. Annals of Mathematics and Artificial Intelligence 50(3-4), 333–361 (2007)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP: Theory and implementation. In: de La Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 407–424. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: The DL-Lite family. Journal of Automated Reasoning 39(3), 385–429 (2007)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Chen, W., Kifer, M., Warren, D.S.: Hilog: A foundation for higher-order logic programming. Journal of Logic Programming 15(3), 187–230 (1993)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Databases, pp. 293–322. Plenum Press (1978)Google Scholar
  28. 28.
    Dao-Tran, M., Eiter, T., Krennwallner, T.: Realizing Default Logic over Description Logic Knowledge Bases. In: Proceedings of the 10th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2009). Springer, Heidelberg (to appear, 2009)Google Scholar
  29. 29.
    de Bruijn, J., Eiter, T., Polleres, A., Tompits, H.: Embedding non-ground logic programs into autoepistemic logic for knowledge-base combination. In: Veloso, M.M. (ed.) IJCAI, pp. 304–309 (2007)Google Scholar
  30. 30.
    de Bruijn, J., Eiter, T., Tompits, H.: Embedding approaches to combining rules and ontologies into autoepistemic logic. In: Brewka, G., Lang, J. (eds.) Proceedings of the Eleventh International Conference on Principles of Knowledge Representation and Reasoning (KR 2008), pp. 485–495. AAAI Press, Menlo Park (2008)Google Scholar
  31. 31.
    de Bruijn, J., Pearce, D., Polleres, A., Valverde, A.: Quantified Equilibrium Logic and Hybrid Rules. In: Marchiori, M., Pan, J.Z., Marie, C.d.S. (eds.) RR 2007. LNCS, vol. 4524, pp. 58–72. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  32. 32.
    Dean, M., Schreiber, G., Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference, W3C Recommendation (February 2004)Google Scholar
  33. 33.
    Donini, F., Lenzerini, M., Nardi, D., Schaerf, A.: AL-Log: Integrating Datalog and description logics. Intelligent Information Systems 10(3), 227–252 (1998)CrossRefMATHGoogle Scholar
  34. 34.
    Drabent, W.: SLS-resolution without floundering. In: Pereira, L.M., Nerode, A. (eds.) Proc. 2nd International Workshop on Logic Programming and Non-Monotonic Reasoning, pp. 82–98. MIT Press, Cambridge (1993)Google Scholar
  35. 35.
    Drabent, W.: What is failure? An approach to constructive negation. Acta Informatica 32(1), 27–59 (1995)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Drabent, W., Maluszynski, J.: Hybrid Rules with Well-Founded Semantics. Preliminarily accepted to Knowledge and Information Systems (2009)Google Scholar
  37. 37.
    Drabent, W., Henriksson, J., Maluszynski, J.: HD-rules: A hybrid system interfacing Prolog with DL-reasoners. In: Proceedings of the ICLP 2007 Workshop on Applications of Logic Programming to the Web, Semantic Web and Semantic Web Services (ALPSWS 2007). CEUR Workshop Proceedings, vol. 287 (2007), http://www.ceur-ws.org/Vol-287
  38. 38.
    Drabent, W., Henriksson, J., Maluszynski, J.: Hybrid reasoning with rules and constraints under well-founded semantics. In: Marchiori, M., Pan, J.Z., de Sainte Marie, C. (eds.) RR 2007. LNCS, vol. 4524, pp. 348–357. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  39. 39.
    Drabent, W., Małuszyński, J.: Well-founded Semantics for Hybrid Rules. In: Marchiori, M., Pan, J.Z., de Sainte Marie, C. (eds.) RR 2007. LNCS, vol. 4524, pp. 1–15. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  40. 40.
    Eiter, T., Ianni, G., Krennwallner, T., Polleres, A.: Rules and Ontologies for the Semantic Web. In: Baroglio, C., Bonatti, P.A., Maluszynski, J., Marchiori, M., Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 1–53. Springer, Heidelberg (2008), Slides available at: http://rease.semanticweb.org/ CrossRefGoogle Scholar
  41. 41.
    Eiter, T., Ianni, G., Krennwallner, T., Schindlauer, R.: Exploiting conjunctive queries in description logic programs. Annals of Mathematics and Artificial Intelligence (2009); published online 27 January 2009, doi:10.1007/s10472-009-9111-3. Also available as Tech. Rep. INFSYS RR-1843-08-02, Inst. of Information Systems, TU ViennaGoogle Scholar
  42. 42.
    Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R.: Well-founded semantics for description logic programs in the Semantic Web. Technical Report INFSYS RR-1843-09-01, Institut für Informationssysteme, Technische Universität Wien, A-1040 Vienna, Austria (March 2009)Google Scholar
  43. 43.
    Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programminag with description logics for the Semantic Web. Artificial Intelligence 172(12-13), 1495–1539 (2008)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-Order Reasoning and External Evaluations in Answer Set Programming. In: International Joint Conference on Artificial Intelligence (IJCAI 2005), Edinburgh, UK, August 2005, pp. 90–96 (2005)Google Scholar
  45. 45.
    Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective integration of declarative rules with external evaluations for semantic-web reasoning. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 273–287. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  46. 46.
    Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the Semantic Web. In: Dubois, D., Welty, C., Williams, M.A. (eds.) Proceedings Ninth International Conference on Principles of Knowledge Representation and Reasoning (KR 2004), Whistler, British Columbia, Canada, June 2-5, pp. 141–151. Morgan Kaufmann, San Francisco (2004)Google Scholar
  47. 47.
    Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Well-founded semantics for description logic programs in the Semantic Web. In: Antoniou, G., Boley, H. (eds.) RuleML 2004. LNCS, vol. 3323, pp. 81–97. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  48. 48.
    Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T., Ielpa, G.: Design and Implementation of Aggregate Functions in the DLV System. Theory and Practice of Logic Programming 8(5-6), 545–580 (2008)MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    Ferrand, G., Deransart, P.: Proof method of partial correctness and weak completeness for normal logic programs. J. Log. Program. 17(2/3&4), 265–278 (1993)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R.A., Bowen, K. (eds.) Proceedings of the Fifth International Conference on Logic Programming, pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar
  51. 51.
    Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In: Logic Programming: Proceedings Fifth Intl. Conference and Symposium, pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar
  52. 52.
    Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases. New Generation Computing 9, 365–385 (1991)CrossRefMATHGoogle Scholar
  53. 53.
    Grosof, B., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Combining Logic Programs with Description Logic. In: Proceedings of 12th International Conference on the World Wide Web (2003)Google Scholar
  54. 54.
    Grosof, B.N.: Prioritized Conflict Handling for Logic Programs. In: Małuszyński, J. (ed.) Logic Programming, Proceedings of the 1997 International Symposium, pp. 197–211. MIT Press, Cambridge (1997)Google Scholar
  55. 55.
    Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  56. 56.
    Herre, H., Jaspars, J., Wagner, G.: Partial logics with two kinds of negation as a foundation for knowledge-based reasoning. In: Gabbay, D., Wansing, H. (eds.) What is Negation?, pp. 121–159. Kluwer Academic Publishers, Dordrecht (1999)CrossRefGoogle Scholar
  57. 57.
    Heymans, S., de Bruijn, J., Predoiu, L., Feier, C., Van Nieuwenborgh, D.: Guarded hybrid knowledge bases. TPLP 8(3), 411–429 (2008)MathSciNetMATHGoogle Scholar
  58. 58.
    Heymans, S., Toma, I.: Ranking services using fuzzy hex-programs. In: Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 181–196. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  59. 59.
    Hoehndorf, R., Loebe, F., Kelso, J., Herre, H.: Representing default knowledge in biomedical ontologies: Application to the integration of anatomy and phenotype ontologies. BMC Bioinformatics 8(1), 377 (2007)CrossRefGoogle Scholar
  60. 60.
    Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible \(\mathcal{SROIQ}\). In: Proceedings of the 10th International Conference of Knowledge Representation and Reasoning (KR 2006), pp. 57–67 (2006)Google Scholar
  61. 61.
    Kifer, M.: Rules and Ontologies in F-Logic. In: Eisinger, N., Małuszyński, J. (eds.) Reasoning Web. LNCS, vol. 3564, pp. 22–34. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  62. 62.
    Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-based languages. J. ACM 42(4), 741–843 (1995)MathSciNetCrossRefMATHGoogle Scholar
  63. 63.
    Knorr, M., Alferes, J.J., Hitzler, P.: A Well-founded Semantics for Hybrid MKNF Knowledge Bases. In: DL 2007, 20th Int. Workshop on Description Logics, pp. 347–354. Bozen-Bolzano University Press (2007)Google Scholar
  64. 64.
    Knorr, M., Alferes, J.J., Hitzler, P.: A coherent well-founded model for hybrid mknf knowledge bases. In: Ghallab, M., Spyropoulos, C.D., Fakotakis, N., Avouris, N.M. (eds.) ECAI. Frontiers in Artificial Intelligence and Applications, vol. 178, pp. 99–103. IOS Press, Amsterdam (2008)Google Scholar
  65. 65.
    Konolige, K.: Quantification in autoepistemic logic. Fundam. Inform. 15(3-4), 275–300 (1991)MathSciNetMATHGoogle Scholar
  66. 66.
    Krötzsch, M., Rudolph, S., Hitzler, P.: Description logic rules. In: Ghallab, M., Spyropoulos, C.D., Fakotakis, N., Avouris, N.M. (eds.) ECAI 2008 - 18th European Conference on Artificial Intelligence, Patras, Greece, July 21-25. Frontiers in Artificial Intelligence and Applications, vol. 178, pp. 80–84. IOS Press, Amsterdam (2008)Google Scholar
  67. 67.
    Krötzsch, M., Rudolph, S., Hitzler, P.: Elp: Tractable rules for OWL 2. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 649–664. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  68. 68.
    Levy, A., Rousset, M.: CARIN: A representation language combining Horn rules and description logics. Artificial Intelligence 104(1-2), 165–209 (1998)MathSciNetCrossRefMATHGoogle Scholar
  69. 69.
    Lifschitz, V.: Nonmonotonic databases and epistemic queries. In: Proceedings IJCAI 1991, pp. 381–386 (1991)Google Scholar
  70. 70.
    Lloyd, J.W.: Foundations of logic programming, Second extended edn. Springer series in symbolic computation. Springer, New York (1987)CrossRefMATHGoogle Scholar
  71. 71.
    Lukasiewicz, T.: Probabilistic description logic programs. In: Godo, L. (ed.) ECSQARU 2005. LNCS, vol. 3571, pp. 737–749. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  72. 72.
    Lukasiewicz, T.: Fuzzy description logic programs under the answer set semantics for the Semantic Web. In: Proceedings RuleML 2006, pp. 89–96. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  73. 73.
    Lukasiewicz, T.: A novel combination of answer set programming with description logics for the Semantic Web. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 384–398. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  74. 74.
    Lukasiewicz, T.: Probabilistic description logic programs. Int. J. Approx. Reasoning 45(2), 288–307 (2007)MathSciNetCrossRefMATHGoogle Scholar
  75. 75.
    Lukasiewicz, T.: Tractable probabilistic description logic programs. In: Prade, H., Subrahmanian, V.S. (eds.) SUM 2007. LNCS, vol. 4772, pp. 143–156. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  76. 76.
    Lukasiewicz, T.: Fuzzy description logic programs under the answer set semantics for the Semantic Web. Fundam. Inform. 82(3), 289–310 (2008)MathSciNetMATHGoogle Scholar
  77. 77.
    Lukasiewicz, T., Straccia, U.: Description logic programs under probabilistic uncertainty and fuzzy vagueness. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS, vol. 4724, pp. 187–198. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  78. 78.
    Lukasiewicz, T., Straccia, U.: Tightly integrated fuzzy description logic programs under the answer set semantics for the Semantic Web. In: Marchiori, M., Pan, J.Z., Marie, C.d.S. (eds.) RR 2007. LNCS, vol. 4524, pp. 289–298. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  79. 79.
    Lukasiewicz, T., Straccia, U.: Top-k retrieval in description logic programs under vagueness for the Semantic Web. In: Prade, H., Subrahmanian, V.S. (eds.) SUM 2007. LNCS, vol. 4772, pp. 16–30. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  80. 80.
    Lukasiewicz, T., Straccia, U.: Tightly coupled fuzzy description logic programs under the answer set semantics for the Semantic Web. Int. J. Semantic Web Inf. Syst. 4(3), 68–89 (2008)CrossRefGoogle Scholar
  81. 81.
    Małuszyński, J.: Integration of Rules Ontologies. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems. Springer, Heidelberg (2009)Google Scholar
  82. 82.
    Marin, D.: A formalization of RDF. Technical Report TR/DCC-2006-8, TR Dept. Computer Science, Universidad de Chile (2006)Google Scholar
  83. 83.
    Marriott, K., Stuckey, P.J., Wallace, M.: Constraint logic programming. In: Handbook of Constraint Programming. Elsevier, Amsterdam (2006)Google Scholar
  84. 84.
    Miller, L., Brickley, D.: The Friend of a Friend (FOAF) Project (since 2000), http://www.foaf-project.org/
  85. 85.
    Motik, B., Rosati, R.: A faithful integration of description logics with logic programming. In: IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 477–482 (2007)Google Scholar
  86. 86.
    Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. J. Web Sem. 3(1), 41–60 (2005)CrossRefGoogle Scholar
  87. 87.
    Motik, B., Rosati, R.: Closing semantic web ontologies. Technical report, University of Manchester (2006) (version March 7, 2007), http://web.comlab.ox.ac.uk/people/Boris.Motik/pubs/mr06closing-report.pdf
  88. 88.
    Van Nieuwenborgh, D., De Cock, M., Vermeir, D.: Computing Fuzzy Answer Sets Using dlvhex. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 449–450. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  89. 89.
    Van Nieuwenborgh, D., Eiter, T., Vermeir, D.: Conditional Planning with External Functions. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS, vol. 4483, pp. 214–227. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  90. 90.
    Nilsson, U., Małuszyński, J.: Logic, Programming and Prolog, 2nd edn. John Wiley and Sons, Chichester (1995), http://www.ida.liu.se/~ulfni/lpp/ MATHGoogle Scholar
  91. 91.
    Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language Semantics and Abstract Syntax, W3C Recommendation (February 2004)Google Scholar
  92. 92.
    Poggi, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Linking data to ontologies. Journal of Data Semantics X, 133–173 (2008)MATHGoogle Scholar
  93. 93.
    Przymusinski, T.C.: On the declarative and procedural semantics of logic programs. Journal of Automated Reasoning 5, 167–205 (1989)MathSciNetCrossRefMATHGoogle Scholar
  94. 94.
    Reiter, R.: On Closed World Data Bases. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 55–76. Plenum Press, New York (1978)CrossRefGoogle Scholar
  95. 95.
    Reiter, R.: A Logic for Default Reasoning. Artificial Intelligence 13(1-2), 81–132 (1980)MathSciNetCrossRefMATHGoogle Scholar
  96. 96.
    Rosati, R.: On the decidability and complexity of integrating ontologies and rules. Journal of Web Semantics 3(1), 61–73 (2005)CrossRefGoogle Scholar
  97. 97.
    Rosati, R.: \({\cal DL}\)+log: Tight integration of Description Logics and disjunctive Datalog. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) KR, pp. 68–78. AAAI Press, Menlo Park (2006)Google Scholar
  98. 98.
    Ross, K.A.: Modular stratification and magic sets for datalog programs with negation. J. ACM 41(6), 1216–1266 (1994)MathSciNetCrossRefMATHGoogle Scholar
  99. 99.
    Schindlauer, R.: Answer-Set Programming for the Semantic Web. PhD thesis, Vienna University of Technology, Austria (December 2006)Google Scholar
  100. 100.
    Simkus, M., Eiter, T.: FDNC: Decidable non-monotonic disjunctive logic programs with function symbols. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS, vol. 4790, pp. 514–530. Springer, Heidelberg (2007); Full paper to appear in ACM TOCLCrossRefGoogle Scholar
  101. 101.
    Sintek, M., Decker, S.: TRIPLE - A Query, Inference, and Transformation Language for the Semantic Web. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, p. 364. Springer, Heidelberg (2002), http://triple.semanticweb.org/ CrossRefGoogle Scholar
  102. 102.
    van Gelder, A., Ross, K.A., Schlipf, J.S.: Unfounded Sets and Well-founded Semantics for General Logic Programs. In: Principles of Database Systems, pp. 221–230. ACM, New York (1988)Google Scholar
  103. 103.
    Van Gelder, A., Ross, K.A., Schlipf, J.S.: The Well-Founded Semantics for General Logic Programs. Journal of the ACM 38(3), 620–650 (1991)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Włodzimierz Drabent
    • 1
    • 2
  • Thomas Eiter
    • 3
  • Giovambattista Ianni
    • 3
    • 4
  • Thomas Krennwallner
    • 3
  • Thomas Lukasiewicz
    • 5
    • 3
  • Jan Małuszyński
    • 2
  1. 1.Institute of Computer SciencePolish Academy of SciencesWarszawaPoland
  2. 2.Department of Computer and Information ScienceLinköping UniversityLinköpingSweden
  3. 3.Institut für InformationssystemeTechnische Universität WienViennaAustria
  4. 4.Dipartimento di MatematicaUniversità della CalabriaRendeItaly
  5. 5.Computing LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations