Local Restoration for Trees and Arborescences

  • Paola Iovanna
  • Gaia Nicosia
  • Gianpaolo Oriolo
  • Laura Sanità
  • Ezio Sperduto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5464)

Abstract

Protocols belonging to the Spanning Tree Protocol (STP) route traffic demands on tree topologies that are evaluated through shortest path procedures. In this paper we deal with the problem of assigning costs to the arcs of a network in order to guarantee that SPT protocols efficiently re-route traffic demands in failure situations: namely, without redirecting traffic demands that are not affected by the failure. We say that a communication network has the local tree-restoration property if there exists a set of costs for its arcs such that the above property holds.

We show that an undirected network has the local tree-restoration property if and only if it is 2-connected. In particular, we provide a quite simple procedure for assigning costs to the arcs of a 2-connected network so that the property holds. For the directed case, we show that deciding whether a network has the local tree-restoration property is NP-hard, even in some “simple” cases.

References

  1. 1.
    Brightwell, G., Oriolo, G., Sheperd, F.B.: Reserving Resilient Capacity in a Network. Siam Journal on Discrete Mathematics 14(4), 524–539 (2001)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Widmayer, P.: Computing all the best swap edges distributively. Journal of Parallel and Distributed Computing 68(7) (2008)Google Scholar
  3. 3.
    Grötschel, M., Monma, C.L., Stoer, M.: Design of survivable networks. In: Handbook in OR and MS, vol. 7, pp. 617–672. Elsevier, Amsterdam (1995)Google Scholar
  4. 4.
    Kolarov, A., Sengupta, B., Iwata, A.: Design of Multiple Reverse Spanning Trees in Next Generation of Ethernet-VPNs. In: IEEE GLOBECOM 2004, vol. 3, pp. 1390–1395 (2004)Google Scholar
  5. 5.
    Nardelli, E., Proietti, G., Widmayer, P.: Swapping a Failing Edge of a Single Source Shortest Paths Tree Is Good and Fast. Algorithmica 35, 56–74 (2003)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Padmaraj, M., Nair, S., Marchetti, M., Chiruvolu, G., Ali, M.: Traffic Engineering in Enterprise Ethernet with Multiple Spanning Tree Regions. In: Proc. of System Communications (ICW 2005), Montreal, Canada, pp. 261–266 (2005)Google Scholar
  7. 7.
    Sharma, S., Gopalan, K., Nanda, S., Chiueh, T.: Viking: A Multi-Spanning-Tree Ethernet Architecture for Metropolitan Area and Cluster Networks. In: IEEE INFOCOM 2004, vol. 4, pp. 2283–2294 (2004)Google Scholar
  8. 8.
    de Sousa, A.F., Soares, G.: Improving Load Balance and Minimizing Service Disruption on Ethernet Networks using IEEE 802.1S MSTP. In: Proc. EuroFGI Workshop on IP QoS and Traffic Control, Lisbon, Portugal, vol. 1, pp. 25–35 (2007)Google Scholar
  9. 9.
    Sperduto, E.: Combinatorial structures in communication networks, Ph. D. thesis in Computer Science and Automation, Università Roma Tre (2008)Google Scholar
  10. 10.
    Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Computing 1(2), 146–160 (1972)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Standard IEEE 802.1DGoogle Scholar
  12. 12.
    Standard IEEE 802.1sGoogle Scholar
  13. 13.
    Standard IEEE 802.1wGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Paola Iovanna
    • 1
  • Gaia Nicosia
    • 2
  • Gianpaolo Oriolo
    • 3
  • Laura Sanità
    • 3
  • Ezio Sperduto
    • 2
  1. 1.Ericsson Lab ItalyRomaItaly
  2. 2.Dipartimento di Informatica e AutomazioneUniversità degli studi Roma TreItaly
  3. 3.Dipartimento di Ingegneria dell’ImpresaUniversità degli studi di Roma Tor VergataItaly

Personalised recommendations