On a Generic Uncertainty Model for Position Information

  • Ralph Lange
  • Harald Weinschrott
  • Lars Geiger
  • André Blessing
  • Frank Dürr
  • Kurt Rothermel
  • Hinrich Schütze
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5786)


Position information of moving as well as stationary objects is generally subject to uncertainties due to inherent measuring errors of positioning technologies, explicit tolerances of position update protocols, and approximations by interpolation algorithms. There exist a variety of approaches for specifying these uncertainties by mathematical uncertainty models such as tolerance regions or the Dilution of Precision (DOP) values of GPS. In this paper we propose a principled generic uncertainty model that integrates the different approaches and derive a comprehensive query interface for processing spatial queries on uncertain position information of different sources based on this model. Finally, we show how to implement our approach with prevalent existing uncertainty models.


Global Navigation Satellite System Uncertainty Model Range Query Position Information Dead Reckoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schmidt, A., Beigl, M., Gellersen, H.W.: There is more to context than location. Computers & Graphics Journal 23, 893–902 (1999)CrossRefGoogle Scholar
  2. 2.
    Dey, A.K., Abowd, G.D.: Towards a better understanding of context and context-awareness. In: Proc. of CHI 2000 Workshop on the What, Who, Where, When and How of Context-Awareness, The Hague, Netherlands (2000)Google Scholar
  3. 3.
    Leonhardi, A., Rothermel, K.: A comparison of protocols for updating location information. Cluster Computing: The Journal of Networks, Software Tools and Applications 4, 355–367 (2001)CrossRefGoogle Scholar
  4. 4.
    Čivilis, A., Jensen, C.S., Pakalnis, S.: Techniques for efficient road-network-based tracking of moving objects. IEEE Trans. on Know. and Data Eng. 17, 698–712 (2005)CrossRefGoogle Scholar
  5. 5.
    Lange, R., Farrell, T., Dürr, F., Rothermel, K.: Remote real-time trajectory simplification. In: Proc. of 7th PerCom, Galveston, TX, USA (2009)Google Scholar
  6. 6.
    Hub, A., Kombrink, S., Bosse, K., Ertl, T.: Tania – a tactile-acoustical navigation and information assistant for the 2007 csun conference. In: Proc. of 22nd CSUN, Los Angeles, CA, USA (2007)Google Scholar
  7. 7.
    United States Department of Defense, Navstar GPS: Global Positioning System Standard Positioning Service Performance Standard, 4th edn (2008)Google Scholar
  8. 8.
    Pfoser, D., Jensen, C.S.: Capturing the uncertainty of moving-object representations. In: Proc. of 6th SSD, Hong Kong, China, pp. 111–131 (1999)Google Scholar
  9. 9.
    Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Querying imprecise data in moving object environments. IEEE Trans. on Know. and Data Eng. 16, 1112–1127 (2004)CrossRefGoogle Scholar
  10. 10.
    Lange, R., Cipriani, N., Geiger, L., Großmann, M., Weinschrott, H., Brodt, A., Wieland, M., Rizou, S., Rothermel, K.: Making the world wide space happen: New challenges for the nexus context platform. In: Proc. of 7th PerCom, Galveston, TX, USA, pp. 300–303 (2009)Google Scholar
  11. 11.
    Güting, R.H., Schneider, M.: Moving Objects Databases. Morgan Kaufmann Publishers, San Francisco (2005)zbMATHGoogle Scholar
  12. 12.
    Hightower, J., Borriello, G.: Location systems for ubiquitous computing. Computer 34, 57–66 (2001)CrossRefGoogle Scholar
  13. 13.
    Smith, A., Balakrishnan, H., Goraczko, M., Priyantha, N.: Tracking moving devices with the cricket location system. In: Proc. of 2nd MobiSys, pp. 190–202 (2004)Google Scholar
  14. 14.
    Bahl, P., Padmanabhan, V.N.: Radar: An in-building rf-based user location and tracking system. In: Proc. of 19th INFOCOM, pp. 775–784 (2000)Google Scholar
  15. 15.
    Harter, A., Hopper, A.: A distributed location system for the active office. IEEE Network 8, 62–70 (1994)CrossRefGoogle Scholar
  16. 16.
    Orr, R.J., Abowd, G.D.: The smart floor: A mechanism for natural user identification and tracking. In: Extended Abstracts on Human factors in Computing Systems (CHI 2000), The Hague, The Netherlands, pp. 275–276 (2000)Google Scholar
  17. 17.
    Mehmood, M.A., Kulik, L., Tanin, E.: Autonomous navigation of mobile agents using rfid-enabled space partitions. In: Proc. of 16th ACM GIS, Irvine, CA, USA (2008)Google Scholar
  18. 18.
    Lange, R., Dürr, F., Rothermel, K.: Online trajectory data reduction using connection-preserving dead reckoning. In: Proc. of 5th MobiQuitous, Dublin, Ireland (2008)Google Scholar
  19. 19.
    Roth, J.: Inferring position knowledge from location predicates. In: Hightower, J., Schiele, B., Strang, T. (eds.) LoCA 2007. LNCS, vol. 4718, pp. 245–262. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Fox, D., Hightower, J., Liao, L., Schulz, D., Borriello, G.: Bayesian filtering for location estimation. IEEE Per. Comp. 2, 24–33 (2003)CrossRefGoogle Scholar
  21. 21.
    Pauly, A., Schneider, M.: Topological predicates between vague spatial objects. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 418–432. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Cohn, A.G., Gotts, N.M.: The ‘egg-yolk’ representation of regions with indeterminate boundaries. In: Proceedings GISDATA Specialist Meeting on Spatial Objects with Undetermined Boundaries, pp. 171–187 (1996)Google Scholar
  23. 23.
    Schneider, M.: Fuzzy Spatial Data Types for Spatial Uncertainty Management in Databases. In: Handbook of Research on Fuzzy Information Processing in Databases, pp. 490–515 (2008)Google Scholar
  24. 24.
    Trajcevski, G., Wolfson, O., Zhang, F., Chamberlain, S.: The geometry of uncertainty in moving objects databases. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 233–250. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Yu, X., Mehrotra, S.: Capturing uncertainty in spatial queries over imprecise data. In: Mařćk, V., Retschitzegger, W., Štěpánková, O. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 192–201. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ralph Lange
    • 1
  • Harald Weinschrott
    • 1
  • Lars Geiger
    • 1
  • André Blessing
    • 1
  • Frank Dürr
    • 1
  • Kurt Rothermel
    • 1
  • Hinrich Schütze
    • 1
  1. 1.Collaborative Research Center 627Universität StuttgartGermany

Personalised recommendations