Advertisement

From Third- to Fourth-Generation Light Sources: Free-Electron Lasers in the UV and X-ray Range

  • M. Altarelli
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 133)

Abstract

Worldwide activities towards the realization of free-electron laser UV and X-ray sources to produce spatially coherent, ultra-short ∼ 100 fs pulses with very high peak brilliance ( ≥ 1028–1032 photons/s/ mm2/mrad2/0.1% BW) are summarized. These sources are based on linear accelerators to overcome the limits to brilliance imposed by the ring geometry. The scientific case includes time-resolved studies of dynamics on sub-ps scales, structural studies by imaging of nonperiodic systems, and investigation of high energy-density phenomena such as nonlinear X-ray optics and the production of warm dense matter. Examples of the existing projects are presented, with emphasis on the presently operational FLASH facility at DESY, which delivers ultrashort coherent pulses at 6.5 nm wavelength. Projects in the US, in Japan, and in Europe, aiming to attain the hard X-ray region, with wavelengths of order 0.1 nm, are described. Plans to control the time and energy structure of the pulses by seeding and harmonic generation schemes are also mentioned.

Keywords

Electron Bunch Radio Frequency Pulse High Harmonic Generation Seed Laser Seed Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.H. Bilderback, P. Elleaume, E. Weckert, J. Phys. B: Atom. Mol. Opt. Phys. 38, S773–S797 (1995)CrossRefGoogle Scholar
  2. 2.
    R.W. Schoenlein, et al., Science 287, 2237–2240 (2000)CrossRefADSGoogle Scholar
  3. 3.
    A.M. Kondratenko, E.L. Saldin, Sov. Phys. Dokl. 24, 986–988 (1979)ADSGoogle Scholar
  4. 4.
    R. Bonifacio, C. Pellegrini, L.M. Narducci, Opt. Commun. 50, 373–378 (1984)CrossRefADSGoogle Scholar
  5. 5.
    J.B. Murphy, C. Pellegrini, Nucl. Instrum. Meth. A 238, 159–167 (1985)CrossRefADSGoogle Scholar
  6. 6.
    S.V. Milton, et al., Science 292, 2037–2041 (2001)CrossRefADSGoogle Scholar
  7. 7.
    V. Ayvazyan, et al., Phys. Rev. Lett. 88, 104802-1–104802-4 (2002)Google Scholar
  8. 8.
    S. Schreiber, B. Faatz, K. Honkavaara, Proceedings of EPAC08, Genoa, Italy (2008), http://www.epac08.org/index.php?n=Main.ProceedingsDownload, pp. 133–135
  9. 9.
    K. Honkavaara et al., Proceedings of the 14th International Conference on RF Superconductivity, Berlin 2009, available online at http://accelconf.web.cern.ch/AccelConf/srf2009/papers/mooaau01.pdf
  10. 10.
    S. Düsterer, et al., Opt. Lett. 31, 1750–1752 (2006)CrossRefADSGoogle Scholar
  11. 11.
    H.N. Chapman, et al., Nat. Phys. 2, 839–843 (2006)CrossRefGoogle Scholar
  12. 12.
    R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, J. Hajdu, Nature 406, 752–757 (2000)CrossRefADSGoogle Scholar
  13. 13.
    C. Gutt, et al., submitted to Phys. Rev. BGoogle Scholar
  14. 14.
    S.W. Epp, et al., Phys. Rev. Lett. 98, 183001-1–183001-4 (2007)Google Scholar
  15. 15.
    A.A. Sorokin, S.V. Bobashev, T. Feigl, K. Tiedtke, H. Wabnitz, M. Richter, Phys. Rev. Lett. 99, 213002-1–213002-4 (2007)Google Scholar
  16. 16.
    A.L. Cavalieri, et al., Phys. Rev. Lett. 94, 114801-1–114801-4 (2005)Google Scholar
  17. 17.
    M. Gensch, Infrared Phys. Tech. 51, 423–425 (2008)CrossRefADSGoogle Scholar
  18. 18.
    A. Föhlisch, W. Wurth, private communicationGoogle Scholar
  19. 19.
    W. Roseker, H. Franz, H. Schulte-Schrepping, A. Ehnes, O. Leupold, F. Zontone, A. Robert, G. Grübel, Optics. Lett. 34, 1768–1770 (2009)CrossRefADSGoogle Scholar
  20. 20.
    P. Emma, Proceedings of the Particle Accelerator Conference (PAC’09), Vancouver, Canada, in pressGoogle Scholar
  21. 21.
    T. Shintake et al., Phys. Rev. ST-AB 12, 070701-1–070701-12 (2009) and references thereinGoogle Scholar
  22. 22.
    M. Altarelli et al., editors, “XFEL: the European X-ray Free-Electron Laser: Technical Design Report” DESY Report DESY 2006-097, July 2006. Available online at http://www.xfel.eu/documents/
  23. 23.
    M. Altarelli et al., editors, see Ref. 22, pp. 173–211Google Scholar
  24. 24.
    A. Doyuran et al., Phys. Rev. Spec. Top. Accel. Beams 7, 050701-1–050701-12 (2004)Google Scholar
  25. 25.
    G.D. Auria, et al., Conceptual Design Report of the FERMI@Elettra Project (2007), http://www.elettra.trieste.it/FERMI/index.php?n=Main.CDRdocument
  26. 26.
    G. Lambert et al., Nat. Phys. 4, 296–300 (2008)CrossRefGoogle Scholar
  27. 27.
    A. Azima et al., Proceedings of EPAC 08, Genoa, Italy http://www.epac08.org/index.php?n=Main.ProceedingsDownload/ pp. 127–129

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.European XFELHamburgGermany

Personalised recommendations