Dynamics of Mesoscopic Magnetic Objects

  • C. QuitmannEmail author
  • J. Raabe
  • A. Puzic
  • K. Kuepper
  • S. Wintz
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 133)


We report on the dynamic properties of mesoscopic magnetic objects. Such objects have dimensions somewhat larger than the magnetic exchange length ξ. This leads to relatively simple and stable patterns of the magnetization, which can be excited using magnetic field pulses. The subsequent dynamics can be studied using X-ray-based magnetic microscopy. We show examples of high symmetry structures where the dynamics is relatively simple and can be analyzed quantitatively in terms of amplitude, frequency, damping, and symmetry.Intentional defects allow modifying specific modes. When using high amplitude excitations, the magnetization in such structures can be switched.


Domain Wall Vortex Core Magnetic Force Microscopy Exchange Length Closure Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



It is our pleasure to thank C.H. Back, M. Buess, J. Stahl, I. Mönch, R. Mattheis, L. Bischoff, J. Fassbender, and F. Nolting who contributed to the progress of this work at various stages for data analysis, for sample preparation, and for developing the instrumentation. Part of this work was performed at the Swiss Light Source, Paul Scherrer Institute, Switzerland.


  1. 1.
    J.H.E. Griffiths, Nature 158, 670 (1946)CrossRefADSGoogle Scholar
  2. 2.
    C. Kittel, Phys. Rev. 73, 155–161 (1948)CrossRefADSGoogle Scholar
  3. 3.
    M. Farle, Rep. Prog. Phys. 61, 755–826 (1998)CrossRefADSGoogle Scholar
  4. 4.
    I. Neudecker, G. Woltersdorf, B. Heinrich, T. Okuno, G. Gubbiotti, C.H. Back, J. Magn. Magn. Mater. 307, 148–156 (2006)CrossRefADSGoogle Scholar
  5. 5.
    M. Klàni et al., Magnetism and Synchrotron Radiation - New Trends (Springer, Proceedings in Physics, Vol. 133, Berlin, 2010), ISBN: 978-3-642-04497-7Google Scholar
  6. 6.
    A. Hubert, R. Schäfer, Magnetic Domains - The Analysis of Magnetic Microstructures, (Springer, Berlin, 2008), ISBN: 978-3-540-64108-7Google Scholar
  7. 7.
    C.H. Back, R. Allenspach, W. Weber, S.S.P. Parkin, D. Weller, E.L. Garwin, H.C. Siegmann, Science 285, 864 (1999)CrossRefGoogle Scholar
  8. 8.
    M. Bauer, J. Fassbender, B. Hillebrands, R.L. Stamps, Phys. Rev. B 61, 3410 (2000)CrossRefADSGoogle Scholar
  9. 9.
    E. Beaurepaire, J.C. Merle, A. Daunois, J.Y. Bigot, Phys. Rev. Lett. 76, 4250–4253 (1996); M. Aeschlimann, PRL 79, 5158 (1997)Google Scholar
  10. 10.
    C. Quitmann, J. Raabe, C. Buehler, et al., Nucl. Instrum. Meth. A 588, 494–501 (2008)CrossRefADSGoogle Scholar
  11. 11.
    K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, C. David, Phys. Rev. Lett. 99, 264801 (2007)CrossRefADSGoogle Scholar
  12. 12.
    W. Kohn, Nobel Lecture: Rev. Mod. Phys. 71, 1253–1266 (1999)CrossRefADSGoogle Scholar
  13. 13.
    T.L. Gilbert, IEEE Trans. Magn. 40, 3443–3449 (2004)CrossRefADSGoogle Scholar
  14. 14.
    J.C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996); L. Berger, Phys. Rev. B 54, 9353 (1996)Google Scholar
  15. 15.
    M.J. Donahue, D.G. Porter, OOMMF User’s Guide, Version 1.0, Interagency Report NISTIR 6376, National Institute of Standards and Technology, (Gaithersburg, MD, 1999),
  16. 16.
    M. Scheinfein, LLG micromagnetic simulator (2009),
  17. 17.
    R. Hertel, J. Appl. Phys. 90, 5752 (2001)CrossRefADSGoogle Scholar
  18. 18.
    For a review see: Spin Dynamics in Confined Magnetic Structures II, Series: Topics in Applied Physics, Vol. 87, Hillebrands, Burkard; Ounadjela, Kamel (Eds.), 2003, XVI, 324 p., ISBN: 978-3-540-44084-0.Google Scholar
  19. 19.
    C.H. Back, D. Pescia, M. Buess, Vortex Dynamics, In Spin Dynamics In Confined Magnetic Structures III, Topics In Applied Physics 101 (Springer, Berlin, 2006), pp. 137–160Google Scholar
  20. 20.
    A. Locatelli, E. Bauer, J. Phys. Condens. Matter 20(9), 093002 (2008)CrossRefADSGoogle Scholar
  21. 21.
    F. Nolting, Magnetism and Synchrotron Radiation - New Trends (Springer, Proceedings in Physics, Vol. 133, Berlin, 2010), ISBN: 978-3-642-04497-7Google Scholar
  22. 22.
    G. Schönhense, H.J. Elmers, S.A. Nepijko, C.M. Schneider, Adv. Imag. Electron Phys. 142, 160, (2006)Google Scholar
  23. 23.
    A.L.D. Kilcoyne, T. Tyliszczak, W.F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E.G. Rightor, G.E. Mitchell, A.P. Hitchcock, L. Yang, T. Warwick, H. Ade, J. Synchrotron Radiat. 10, 125–136 (2003)CrossRefGoogle Scholar
  24. 24.
    J. Raabe, G. Tzvetkov, U. Flechsig, et al., Rev. Sci. Instrum. 79, 113704 (2008)CrossRefADSGoogle Scholar
  25. 25.
    G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, G. Materlik, Phys. Rev. Lett. 58, 737 (1987)CrossRefADSGoogle Scholar
  26. 26.
    C.T. Chen, F. Sette, Y. Ma, S. Modesti, Phys. Rev. B 42, 7262 (1990)CrossRefADSGoogle Scholar
  27. 27.
    F. Sette, C.T. Chen, Y. Ma, S. Modesti, N.V. Smith, X-Ray Absorption Fine Structure, ed. by S.S.Hasnain (Ellis Horwood, Chichester, UK, 1991), p. 96Google Scholar
  28. 28.
    K.S. Buchanan et al., Nat. Phys. 1, 172 (2005)CrossRefGoogle Scholar
  29. 29.
    G.N. Kakazei, T. Mewes, P.E. Wigen, et al., J. Nanosci. Nanotechnol. 8, 2811–2826 (2008)Google Scholar
  30. 30.
    J. Goulon, Magnetism and Synchrotron Radiation - New Trends (Springer, Proceedings in Physics, Vol. 133, Berlin, 2010), ISBN: 978-3-642-04497-7Google Scholar
  31. 31.
    G. Boero, S. Mouaziz, S. Rusponi, P. Bencok, F. Nolting, S. Stepanow, P. Gambardella, New J. Phys. 10, 013011 (2008)CrossRefADSGoogle Scholar
  32. 32.
    K. von Bergmann, M. Bode, A. Kubetzka, O. Pietzsch, E.Y. Vedmedenko, R. Wiesendanger, Phil. Mag. 88, 2627–2642 (2008)CrossRefADSGoogle Scholar
  33. 33.
    L. Abelmann, S. Porthun, M. Haasta, C. Lodder, A. Moser, M.E Best, P.J.A van Schendel, B. Stiefel, H.J. Hug, G.P. Heydon, A. Farley, S.R. Hoon, T. Pfaffelhuber, R. Proksch, K. Babcock, J. Magn. Magn. Mater. 190, 135 (1998)CrossRefADSGoogle Scholar
  34. 34.
    E.E. Huber, D.O. Smith, J.B. Goodenough, J. Appl. Phys. 29, 294 (1958)CrossRefADSGoogle Scholar
  35. 35.
    K. Kuepper, M. Buess, J. Raabe, C. Quitmann, J. Fassbender, Phys. Rev. Lett. 99, 167202 (2007)CrossRefADSGoogle Scholar
  36. 36.
    S. Cherifi, R. Hertel, J. Kirschner, H. Wang, R. Belkhou, A. Locatelli, S. Heun, A. Pavlovska, E. Bauer, J. Appl. Phys. 98, 043901 (2005)CrossRefADSGoogle Scholar
  37. 37.
    S.S.P. Parkin, Phys. Rev. Lett. 67, 3598–3601 (1991)CrossRefADSGoogle Scholar
  38. 38.
    F. Nolting, A. Scholl, J. Stöhr, J.W. Seo, J. Fompeyrine, H. Siegwart, J.P. Locquet, S. Anders, J. Lüning, E.E. Fullerton, M.F. Toney, M.R. Scheinfein, H.A. Padmore, Nature 405, 767 (2000)CrossRefADSGoogle Scholar
  39. 39.
    J. Raabe, C. Quitmann, C.H. Back, F. Nolting, S. Johnson, C. Buehler, Phys. Rev. Lett. 94, 217204 (2005)CrossRefADSGoogle Scholar
  40. 40.
    M. Buess, J. Raabe, K. Perzlmaier, C.H. Back, C. Quitmann, Phys. Rev. B 74, 100404 (2006)CrossRefADSGoogle Scholar
  41. 41.
    S.B. Choe, Y. Acremann, A. Scholl, A. Bauer, A. Doran, J. Stöhr, H.A. Padmore, Science 304(5669), 420–422 (2004)CrossRefADSGoogle Scholar
  42. 42.
    A. Puzic, et al., J. Appl. Phys. 97, 10E704 (2005)Google Scholar
  43. 43.
    K. Kuepper, L. Bischoff, Ch. Akhmadaliev, J. Fassbender, H. Stoll, K.W. Chou, A. Puzic, K. Fauth, D. Dolgos, G. Schütz, B. Van Waeyenberge, Appl. Phys. Lett. 90, 062506 (2007)CrossRefADSGoogle Scholar
  44. 44.
    M. Buess, R. Hollinger, T. Haug, et al., Phys. Rev. Lett. 93, 077207 (2004)CrossRefADSGoogle Scholar
  45. 45.
    J. Fassbender, J. McCord, JMMM 320, 579–596 (2008)ADSGoogle Scholar
  46. 46.
    J. Fassbender, L. Bischoff, R. Mattheis, P. Fischer, J. Appl. Phys. 99, 08G301 (2006)CrossRefGoogle Scholar
  47. 47.
    S. Kasai, P. Fischer, Mi-Young Im, K. Yamada, Y. Nakatani, K. Kobayashi, H. Kohno, T. Ono, Phys. Rev. Lett. 101, 237203 (2008)CrossRefADSGoogle Scholar
  48. 48.
    P. Fischer, D.H. Kim, B.L. Mesler, W.Chao, E.H. Anderson, J. Magn. Magn. Mater. 310, 2689 (2007)CrossRefADSGoogle Scholar
  49. 49.
    R. Hertel, S. Gliga, M. Fähnle, C.M. Schneider, Phys. Rev. Lett. 98, 117201 (2007)CrossRefADSGoogle Scholar
  50. 50.
    B. Van Waeyenberge, A. Puzic, H. Stoll, K.W. Chou, T. Tyliszczak, R. Hertel, M. Fähnle, H. Brückl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C.H. Back, G. Schütz, Nature 444, 461–464 (2006)CrossRefADSGoogle Scholar
  51. 51.
    T. Okuno, K. Shigeto, T. Ono, K. Mibu, T. Shinjo, J. Magn. Magn. Mater. 240, 1–6 (2002)CrossRefADSGoogle Scholar
  52. 52.
    A. Thiaville, J. Garcia, R. Dittrich, J. Miltat, T. Schrefl, Phys. Rev. B 67, 094410 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • C. Quitmann
    • 1
    Email author
  • J. Raabe
  • A. Puzic
  • K. Kuepper
  • S. Wintz
  1. 1.Swiss Light SourcePaul Scherrer InstitutVilligenSwitzerland

Personalised recommendations