Advertisement

Exploiting Term Co-occurrence for Enhancing Automated Image Annotation

  • Ainhoa Llorente
  • Simon Overell
  • Haiming Liu
  • Rui Hu
  • Adam Rae
  • Jianhan Zhu
  • Dawei Song
  • Stefan Rüger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5706)

Abstract

This paper describes an application of statistical co-occurrence techniques that built on top of a probabilistic image annotation framework is able to increase the precision of an image annotation system. We observe that probabilistic image analysis by itself is not enough to describe the rich semantics of an image. Our hypothesis is that more accurate annotations can be produced by introducing additional knowledge in the form of statistical co-occurrence of terms. This is provided by the context of images that otherwise independent keyword generation would miss. We applied our algorithm to the dataset provided by ImageCLEF 2008 for the Visual Concept Detection Task (VCDT). Our algorithm not only obtained better results but also it appeared in the top quartile of all methods submitted in ImageCLEF 2008.

Keywords

automated image annotation statistical co-occurrence  image analysis semantic similarity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yavlinsky, A., Schofield, E., Rüger, S.: Automated image annotation using global features and robust nonparametric density estimation. In: Proceedings of the International ACM Conference on Image and Video Retrieval, pp. 507–517 (2005)Google Scholar
  2. 2.
    Hanbury, A., Serra, J.: Mathematical morphology in the CIELAB space. Image Analysis & Stereology 21, 201–206 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Tamura, H., Mori, T., Yamawaki, T.: Textural features corresponding to visual perception. IEEE Transactions on Systems, Man and Cybernetics 8(6), 460–473 (1978)CrossRefGoogle Scholar
  4. 4.
    Deselaers, T., Hanbury, A.: The visual concept detection task in ImageCLEF 2008. In: Peters, C., et al. (eds.) CLEF 2008. LNCS, vol. 5706, pp. 531–538. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    Pedersen, Banerjee, Patwardhan: Maximizing semantic relatedness to perform word sense disambiguation. Technical report, University of Minnesota (2003)Google Scholar
  6. 6.
    Gracia, J., Mena, E.: Web-based measure of semantic relatedness. In: Bailey, J., Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.) WISE 2008. LNCS, vol. 5175, pp. 136–150. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Miller, G.A., Charles, W.G.: Contextual correlates of semantic similarity. Journal of Language and Cognitive Processes 6, 1–28 (1991)CrossRefGoogle Scholar
  8. 8.
    Manning, C.D., Schütze, H.: Foundations of statistical natural language processing. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  9. 9.
    Llorente, A., Rüger, S.: Can a probabilistic image annotation system be improved using a co-occurrence approach? In: Workshop on Cross-Media Information Analysis, Extraction and Management at the 3rd International Conference on Semantic and Digital Media Technologies (2008)Google Scholar
  10. 10.
    Tollari, S., Detyniecki, M., Fakeri-Tabrizi, A., Amini, M.R., Gallinari, P.: UPMC/LIP6 at ImageCLEFphoto 2008: On the exploitation of visual concepts (VCDT). In: Evaluating Systems for Multilingual and Multimodal Information Access – 9th Workshop of the Cross-Language Evaluation Forum (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ainhoa Llorente
    • 1
    • 2
  • Simon Overell
    • 3
  • Haiming Liu
    • 1
  • Rui Hu
    • 1
  • Adam Rae
    • 1
  • Jianhan Zhu
    • 4
  • Dawei Song
    • 5
  • Stefan Rüger
    • 1
  1. 1.Knowledge Media InstituteThe Open UniversityMilton KeynesUnited Kingdom
  2. 2.INFOTECH Unit, ROBOTIKER-TECNALIA, Parque TecnológicoBizkaiaSpain
  3. 3.Department of ComputingImperial College LondonLondonUnited Kingdom
  4. 4.University College LondonSuffolkUnited Kingdom
  5. 5.School of ComputingThe Robert Gordon UniversityAberdeenUnited Kingdom

Personalised recommendations