Advertisement

Conceptual Image Retrieval over a Large Scale Database

  • Adrian Popescu
  • Hervé Le Borgne
  • Pierre-Alain Moëllic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5706)

Abstract

Image retrieval in large-scale databases is currently based on a textual chains matching procedure. However, this approach requires an accurate annotation of images, which is not the case on the Web. To tackle this issue, we propose a reformulation method that reduces the influence of noisy image annotations. We extract a ranked list of related concepts for terms in the query from WordNet and Wikipedia, and use them to expand the initial query. Then some visual concepts are used to re-rank the results for queries containing, explicitly or implicitly, visual cues. First evaluations on a diversified corpus of 150000 images were convincing since the proposed system was ranked 4 th and 2 nd at the WikipediaMM task of the ImageCLEF 2008 campaign [1].

Keywords

image retrieval large-scale database query reformulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsikrika, T., Kludas, J.: Overview of the WikipediaMM task at ImageCLEF 2008. In: Peters, C., et al. (eds.) CLEF 2008. LNCS, vol. 5706, pp. 539–550. Springer, Heidelberg (2009)Google Scholar
  2. 2.
    Fellbaum, C.: WordNet: an electronic lexical database. MIT press, Cambridge (1998)zbMATHGoogle Scholar
  3. 3.
    Yang, J., Wenyin, L., Zhang, H., Zhuang, Y.: Thesaurus-aided approach for image browsing and retrieval. In: IEEE Intl. Conference on Multimedia and Expo, 2001. ICME 2001, pp. 1135–1138 (2001)Google Scholar
  4. 4.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: A nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Ponzetto, S., Strube, M.: Deriving a large scale taxonomy from wikipedia. In: Proc. of the 22nd National Conference on Artificial Intelligence (AAAI 2007), Vancouver, B.C, pp. 1440–1447 (2007)Google Scholar
  6. 6.
    Kazama, J., Torisawa, K.: Exploiting wikipedia as external knowledge for named entity recognition. In: Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 698–707 (2007)Google Scholar
  7. 7.
    Ruiz-Casado, M., Alfonseca, E., Castells, P.: Automatising the learning of lexical patterns: An application to the enrichment of wordnet by extracting semantic relationships from wikipedia. Data Knowl. Eng. 61, 484–499 (2007)CrossRefGoogle Scholar
  8. 8.
    Datta, R., Joshi, D., Li, J., Wang, J.: Image retrieval: Ideas, influences and trends of the new age. ACM Transactions on Computing Surveys (2008)Google Scholar
  9. 9.
    Wang, H., Liu, S., Chia, L.T.: Does ontology help in image retrieval?: a comparison between keyword, text ontology and multi-modality ontology approaches. In: Proc. of the 14th ACM Intl. Conference on Multimedia, pp. 109–112. ACM, New York (2006)Google Scholar
  10. 10.
    Ferecatu, M., Boujemaa, N., Crucianu, M.: Semantic interactive image retrieval combining visual and conceptual content description. Multimedia systems 13, 309–322 (2007)CrossRefGoogle Scholar
  11. 11.
    Popescu, A., Millet, C., Moëllic, P.A.: Ontology driven content based image retrieval. In: Proc. of the 6th ACM Intl. Conference on Image and Video Retrieval, pp. 387–394. ACM, New York (2007)CrossRefGoogle Scholar
  12. 12.
    Hsu, M.H., Tsai, M.F., Chen, H.H.: Query expansion with conceptnet and wordnet: An intrinsic comparison. In: Ng, H.T., Leong, M.-K., Kan, M.-Y., Ji, D. (eds.) AIRS 2006. LNCS, vol. 4182, pp. 1–13. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Millet, C.: Automatic image annotation: consistent annotation, and creating automatically a learning database. ENST, Paris, PhD thesis (2008)Google Scholar
  14. 14.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. I-511–I-518 (2001)Google Scholar
  15. 15.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady 10, 707–710 (1966)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Adrian Popescu
    • 1
  • Hervé Le Borgne
    • 1
  • Pierre-Alain Moëllic
    • 1
  1. 1.CEA, LIST, Laboratoire d’ingénierie de la connaissance multimédia et multilingueFontenay-aux-RosesFrance

Personalised recommendations