ID-Based Secure Distance Bounding and Localization

  • Nils Ole Tippenhauer
  • Srdjan Čapkun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5789)


In this paper, we propose a novel ID-based secure distance bounding protocol. Unlike traditional secure distance measurement protocols, our protocol is based on standard insecure distance measurement as elemental building block, and enables the implementation of secure distance bounding using commercial off-the-shelf (COTS) ranging devices. We use the proposed protocol to implement secure radio frequency (RF) Time-of-Arrival (ToA) distance measurements on an ultra-wideband (UWB) ranging platform. Based on this, we implement Verifiable Multilateration — a secure localization scheme that enables the computation of a correct device location in the presence of an adversary. To the best of our knowledge, this is the first implementation of an RF ToA secure localization system.


Aggregation Function Mutual Authentication Early Reply Secure Localization Original Brand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brands, S., Chaum, D.: Distance-bounding protocols. In: Proceedings of EUROCRYPT, Lofthus, Norway (1994)Google Scholar
  2. 2.
    Hu, Y.C., Perrig, A., Johnson, D.B.: Packet leashes: a defense against wormhole attacks in wireless networks. In: Proceedings of IEEE InfoCom (2003)Google Scholar
  3. 3.
    Hancke, G.P., Kuhn, M.G.: An RFID Distance Bounding Protocol. In: Proceedings of IEEE SecureComm (2005)Google Scholar
  4. 4.
    Čapkun, S., Buttyan, L., Hubaux, J.P.: Sector: Secure tracking of node encounters in multi-hop wireless networks. In: Proceedings of ACM SASN (2003)Google Scholar
  5. 5.
    Sastry, N., Shankar, U., Wagner, D.: Secure verification of location claims. In: Proceedings of ACM WiSe (2003)Google Scholar
  6. 6.
    Kuhn, M.G.: An asymmetric security mechanism for navigation signals. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 239–252. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Lazos, L., Poovendran, R.: Serloc: secure range-independent localization for wireless sensor networks. In: Proceedings of ACM WiSe (2004)Google Scholar
  8. 8.
    Lazos, L., Poovendran, R., Čapkun, S.: Rope: robust position estimation in wireless sensor networks. In: Proceedings of IPSN (2005)Google Scholar
  9. 9.
    Čapkun, S., Hubaux, J.P.: Secure positioning in wireless networks. IEEE Journal on Selected Areas in Communications (2006)Google Scholar
  10. 10.
    Čapkun, S., Čagalj, M., Srivastava, M.: Secure localization with hidden and mobile base stations. In: Proceedings of IEEE InfoCom (2006)Google Scholar
  11. 11.
    Rasmussen, K.B., Čapkun, S., Čagalj, M.: Secnav: secure broadcast localization and time synchronization in wireless networks. In: Proceedings of ACM/IEEE MobiCom (2007)Google Scholar
  12. 12.
    Desmedt, Y.G.: Major security problems with the ’unforgeable’ (feige-)fiat-shamir proofs of identity and how to overcome them. In: Proceedings of Securicom (1988)Google Scholar
  13. 13.
    Papadimitratos, P., Poturalski, M., Schaller, P., Lafourcade, P., Basin, D., Čapkun, S., Hubaux, J.P.: Secure neighborhood discovery: A fundamental element for mobile ad hoc networking. IEEE Communications Magazine (2008)Google Scholar
  14. 14.
    Multispectral Solutions, Inc: UPS (Urban positioning system),
  15. 15.
    Rasmussen, K.B., Čapkun, S.: Location privacy of distance bounding protocols. In: Proceedings of ACM CCS (2008)Google Scholar
  16. 16.
    Clulow, J., Hancke, G.P., Kuhn, M.G., Moore, T.: So near and yet so far: Distance-bounding attacks in wireless networks. In: Buttyán, L., Gligor, V.D., Westhoff, D. (eds.) ESAS 2006. LNCS, vol. 4357, pp. 83–97. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    The MathWorks, Inc: Matlab – a numerical computing environment,
  18. 18.
    Tippenhauer, N.O., Čapkun, S.: UWB-based secure ranging and localization. Technical Report 586, ETH Zurich (January 2008)Google Scholar
  19. 19.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. Transactions of the ASME Journal of Basic Engineering (1960)Google Scholar
  20. 20.
    Singelée, D., Preneel, B.: Distance bounding in noisy environments. In: Stajano, F., Meadows, C., Capkun, S., Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp. 101–115. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Reid, J., Nieto, J.M.G., Tang, T., Senadji, B.: Detecting relay attacks with timing-based protocols. In: Proceedings of ACM ASIACCS (2007)Google Scholar
  22. 22.
    Bussard, L., Bagga, W.: Distance-bounding proof of knowledge to avoid real-time attacks. In: Proceedings of SEC (2005)Google Scholar
  23. 23.
    Singelee, D., Preneel, B.: Location verification using secure distance bounding protocols. In: Proceedings of MASS, pp. 834–840. Society Press (2005)Google Scholar
  24. 24.
    Drimer, S., Murdoch, S.J.: Keep your enemies close: Distance bounding against smartcard relay attacks. In: Proceedings of the USENIX Security Symposium (2007)Google Scholar
  25. 25.
    Munilla, J., Ortiz, A., Peinado, A.: Distance bounding protocols with void-challenges for RFID. Printed handout at RFIDSec. (July 2006)Google Scholar
  26. 26.
    Hancke, G., Kuhn, M.G.: Attacks on ‘Time-of-Flight’ Distance Bounding Channels. In: Proceedings of WiSeC (2008)Google Scholar
  27. 27.
    Sedihpour, S., Čapkun, S., Ganeriwal, S., Srivastava, M.: Implementation of Attacks on Ultrasonic Ranging Systems, demo at ACM SENSYS 2005 (2005)Google Scholar
  28. 28.
    Chiang, J.T., Haas, J.J., Hu, Y.C.: Secure and precise location verification using distance bounding and simultaneous multilateration. In: ACM-WISEC (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nils Ole Tippenhauer
    • 1
  • Srdjan Čapkun
    • 1
  1. 1.Department of Computer ScienceETH ZürichZürichSwitzerland

Personalised recommendations