Advertisement

On Deriving Tagsonomies: Keyword Relations Coming from Crowd

  • Michal Barla
  • Mária Bieliková
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5796)

Abstract

Many keyword-based approaches to text classification, information retrieval or even user modeling for adaptive web-based system could benefit from knowledge on relations between various keywords, which gives further possibilities to compare them, evaluate their distance etc. This paper proposes an approach how to determine keyword relations (mainly a parent-child relationship) by leveraging collective wisdom of the masses, present in data of collaborative (social) tagging systems on the Web. The feasibility of our approach is demonstrated on the data coming from the social bookmarking systems delicious and CiteULike.

Keywords

Bipartite Graph User Model Spreading Activation Implicit Feedback Social Bookmark System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heckmann, D., et al.: GUMO – The General User Model Ontology. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 428–432. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Andrejko, A., Barla, M., Bieliková, M.: Ontology-based User Modeling for Web-based Information Systems. In: Advances in Information Systems Development, pp. 457–468. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Barla, M., Tvarožek, M., Bieliková, M.: Rule-Based User Characteristics Acquisition from Logs With Semantics for Personalized Web-based Systems. Computing and Informatics (2009) (accepted)Google Scholar
  4. 4.
    Coyle, M., Smyth, B.: (Web Search)shared: Social Aspects of a Collaborative, Community-Based Search Network. In: Nejdl, W., Kay, J., Pu, P., Herder, E. (eds.) AH 2008. LNCS, vol. 5149, pp. 103–112. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Joachims, T., et al.: Accurately interpreting clickthrough data as implicit feedback. In: SIGIR 2005, pp. 154–161. ACM, New York (2005)Google Scholar
  6. 6.
    Mika, P.: Ontologies are us: A Unified Model of Social Networks and Semantics. J. Web Sem. 5(1), 5–15 (2007)CrossRefGoogle Scholar
  7. 7.
    Crestani, F.: Application of Spreading Activation Techniques in Information Retrieval. Artif. Intell. Rev. 11(6), 453–482 (1997)CrossRefGoogle Scholar
  8. 8.
    Fellbaum, C.: WordNet: An Electronical Lexical Database. The MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  9. 9.
    Schwarzkopf, E., Heckmann, D., Dengler, D., Kröner, A.: Mining the Structure of Tag Spaces for User Modeling. In: Data Mining for User Modeling, Workshop held at UM 2007, pp. 63–75 (2007)Google Scholar
  10. 10.
    Schmitz, C., et al.: Mining Association Rules in Folksonomies. In: Data Science and Classification. Studies in Classification, Data Analysis, and Knowledge Organization, Part VI, pp. 261–270. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Heymann, P., Garcia-Molina, H.: Collaborative Creation of Communal Hierarchical Taxonomies in Social Tagging Systems. Technical report, Computer Science Department, Stanford University (2006), http://heymann.stanford.edu/taghierarchy.html (June 29, 2006)
  12. 12.
    Shepitsen, A., et al.: Personalized Recommendation in Social Tagging Systems using Hierarchical Clustering. In: Recommender Systems 2008, pp. 259–266. ACM, New York (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michal Barla
    • 1
  • Mária Bieliková
    • 1
  1. 1.Institute of Informatics and Software Engineering, Faculty of Informatics and Information TechnologiesSlovak University of TechnologyBratislavaSlovakia

Personalised recommendations