Reversible Data Hiding Based On H.264/AVC Intra Prediction

  • Mehdi Fallahpour
  • David Megías
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5450)


This paper proposes a novel high capacity reversible image data hiding scheme using a prediction technique which is effective for error resilience in H.264/AVC. In the proposed method, which is based on H.264/AVC intra prediction, firstly the prediction error blocks are computed and then the error values are slightly modified through shifting the prediction errors. The modified errors are used for embedding the secret data. The experimental results show that the proposed method, called shifted intra prediction error (SIPE), is able of hiding more secret data while the PSNR of the marked image is about 48 dB.


Lossless data hiding H.264/MPEG-4 AVC intra prediction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ITU-T Rec. H.264/ISO/IEC 14496-10, Advanced Video Coding, Final Committee Draft, Document JVTG050 (March 2003) Google Scholar
  2. 2.
    Shi, Y.Q., Ni, Z., Zou, D., Liang, C., Xuan, G.: Lossless data hiding: Fundamentals, algorithms and applications. In: Proc. IEEE Int. Symp. Circuits Syst., Vancouver, BC, Canada, vol. II, pp. 33–36 (2004)Google Scholar
  3. 3.
    Fallahpour, M., Sedaaghi, M.H.: High capacity lossless data hiding based on histogram modification. IEICE Transactions on Electronics Express 4(7), 205–210 (2007)CrossRefGoogle Scholar
  4. 4.
    Lin, C.C., Hsueh, N.L.: Hiding Data Reversibly in an Image via Increasing Differences between Two Neighboring Pixels. IEICE Trans. Inf. & Syst. E90-D(12), 2053–2059 (2007)CrossRefGoogle Scholar
  5. 5.
    Tian, J.: Reversible data embedding using a difference expansion. IEEE Transactions on Circuits and Systems for Video Technology, 890–896 (2003)Google Scholar
  6. 6.
    Kamstra, L., Heijmans, H.J.A.M.: Reversible data embedding into images using wavelet techniques and sorting. IEEE transactions on image processing 14(12), 2082–2090 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Xuan, G., Shi, Y.Q., Chai, P., Cui, X., Ni, Z., Tong, X.: Optimum Histogram Pair Based Image Lossless Data Embedding. In: Shi, Y.Q., Kim, H.-J., Katzenbeisser, S. (eds.) IWDW 2007. LNCS, vol. 5041, pp. 264–278. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Xuan, G., Shi, Y.Q., Yang, C., Zheng, Y., Zou, D., Chai, P.: Lossless data hiding using integer wavelet transform and threshold embedding technique. In: IEEE International Conference on Multimedia & Expo (ICME 2005), Amsterdam, Netherlands, July 6-8 (2005)Google Scholar
  9. 9.
    Thodi, D.M., Rodriguez, J.J.: Expansion embedding techniques for reversible watermarking. IEEE Trans. Image Process. 16(3), 723–730 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kuribayashi, M., Morii, M., Tanaka, H.: Reversible watermark with large capacity based on the prediction error expansion. IEICE Trans. Fundamentals E91-A(7), 1780–1790 (2008)CrossRefGoogle Scholar
  11. 11.
    Richardson, I.E.G.: H.264 and MPEG-4 Video Compression, pp. 120–145. Wiley, Chichester (2003)CrossRefGoogle Scholar
  12. 12.
    Sullivan, G.J., Wiegand, T.: Rate-distortion optimization for video compression. IEEE Signal Process. Mag. 15, 74–90 (1998)CrossRefGoogle Scholar
  13. 13.
    Waterloo Repertoire GreySet2 (October 27, 2008),

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mehdi Fallahpour
    • 1
  • David Megías
    • 1
  1. 1.Estudis d’Informàtica, Multimèdia i TelecomunicacióUniversitat Oberta de CatalunyaBarcelonaSpain

Personalised recommendations