On the Performance of Wavelet Decomposition Steganalysis with JSteg Steganography

  • Ainuddin Wahid Abdul Wahab
  • Johann A. Briffa
  • Hans Georg Schaathun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5450)

Abstract

In this paper, we study the wavelet decomposition based steganalysis technique due to Lyu and Farid. Specifically we focus on its performance with JSteg steganograpy. It has been claimed that the Lyu-Farid technique can defeat JSteg; we confirm this using different images for the training and test sets of the SVM classifier. We also show that the technique heavily depends on the characteristics of training and test set. This is a problem for real-world implementation since the image source cannot necessarily be determined. With a wide range of image sources, training the classifier becomes problematic. By focusing only on different camera makes we show that steganalysis performances significantly less effective for cover images from certain sources.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Westfeld, A., Pfitzmann, A.: Attacks on steganographic systems. In: IHW 1999 (1999)Google Scholar
  2. 2.
    Bhattacharyya, G.K., Johnson, R.A.: Statistical Concepts and Methods. Wiley, Chichester (1977)Google Scholar
  3. 3.
    Böhme, R.: Assessment of steganalytic methods using multiple regression models. In: Barni, M., Herrera-Joancomartí, J., Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005. LNCS, vol. 3727, pp. 278–295. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Farid, H.: Detecting hidden messages using higher-order statistical models. In: International Conference on Image Processing, Rochester, NY (2002)Google Scholar
  5. 5.
    Fridrich, J., Pevný, T., Kodovský, J.: Statistically undetectable jpeg steganography: dead ends challenges, and opportunities. In: MM&Sec 2007: Proceedings of the 9th workshop on Multimedia & security, pp. 3–14. ACM, New York (2007)Google Scholar
  6. 6.
    Fridrich, J.J.: Feature-based steganalysis for jpeg images and its implications for future design of steganographic schemes. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 67–81. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Greenspun, P.: Philip greenspun’s home page (2008), http://philip.greenspun.com/
  8. 8.
    Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classification. Technical report, Taipei (March 2008), http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
  9. 9.
    Kharrazi, M., Sencar, H.T., Memon, N.: Improving steganalysis by fusion techniques: A case study with image steganography. In: Shi, Y.Q. (ed.) Transactions on Data Hiding and Multimedia Security I. LNCS, vol. 4300, pp. 123–137. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Kharrazi, M., Sencar, H.T., Memon, N.: Performance study of common image steganography and steganalysis techniques. Journal of Electronic Imaging 15(4) (2006)Google Scholar
  11. 11.
    Marvel, L.M., Boncelet, C.G., Retter, C.T.: Spread spectrum image steganography. IEEE Transactions On Image Processing 8(1), 1075–1083 (1999)CrossRefGoogle Scholar
  12. 12.
    Lyu, S., Farid, H.: Detecting hidden messages using higher-order statistics and support vector machines. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 340–354. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Lyu, S., Farid, H.: Steganalysis using higher-order image statistics. IEEE Transactions on Information Forensics and Security 1(1), 111–119 (2006)CrossRefGoogle Scholar
  14. 14.
    Noble, W.S., Pavlidis, P.: Gist:support vector machine, http://svm.nbcr.net/cgi-bin/nph-SVMsubmit.cgi
  15. 15.
    Provos, N., Honeyman, P.: Detecting steganographic content on the internet. CITI Technical Report, pp. 01–11 (2001)Google Scholar
  16. 16.
    Strang, G., Nguyen, T.: Wavelets and Filter Banks. Wellesley-Cambridge Press (1996)Google Scholar
  17. 17.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ainuddin Wahid Abdul Wahab
    • 1
    • 2
  • Johann A. Briffa
    • 1
  • Hans Georg Schaathun
    • 1
  1. 1.Department of ComputingUniversity of SurreyEngland
  2. 2.Faculty of Computer Science and Information TechnologyUniversity of MalayaMalaysia

Personalised recommendations