Advertisement

An Epistemological Approach to Steganography

  • Rainer Böhme
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5806)

Abstract

Steganography has been studied extensively in the light of information, complexity, probability and signal processing theory. This paper adds epistemology to the list and argues that Simmon’s seminal prisoner’s problem has an empirical dimension, which cannot be ignored (or defined away) without simplifying the problem substantially. An introduction to the epistemological perspective on steganography is given along with a structured discussion on how the novel perspective fits into the existing body of literature.

Keywords

Cover Model Secret Message Empirical Cover Epistemological Approach Steganographic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Simmons, G.J.: The prisoners’ problem and the subliminal channel. In: Chaum, D. (ed.) Proceedings of CRYPTO, Santa Barbara, CA, pp. 51–67 (1983)Google Scholar
  2. 2.
    Pfitzmann, B.: Information hiding terminology. In: Anderson, R.J. (ed.) IH 1996. LNCS, vol. 1174, pp. 347–350. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Pfitzmann, A., Hansen, M.: Anonymity, unlinkability, undetectability, unobservability, pseudonymity, and identity management – A consolidated proposal for terminology (2008), http://dud.inf.tu-dresden.de/Anon_Terminology.shtml (Version 0.31)
  4. 4.
    Cachin, C.: An information-theoretic model for steganography. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 306–318. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Anderson, R.J.: Stretching the limits of steganography. In: Anderson, R.J. (ed.) IH 1996. LNCS, vol. 1174, pp. 39–48. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. 6.
    Popper, K.R.: Logik der Forschung (The Logic of Scientific Discovery), Wien. Springer, Heidelberg (1935) (Translation to English 1959)zbMATHGoogle Scholar
  7. 7.
    Hopper, N.J., Langford, J., Ahn, L.v.: Provable secure steganography. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 77–92. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Wang, Y., Moulin, P.: Perfectly secure steganography: Capacity, error exponents, and code constructions. IEEE Trans. on Information Theory 54, 2706–2722 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kiayias, A., Raekow, Y., Russell, A.: Efficient steganography with provable security guarantees. In: Barni, M., Herrera-Joancomartí, J., Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005. LNCS, vol. 3727, pp. 118–130. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Westfeld, A., Pfitzmann, A.: Attacks on steganographic systems. In: Pfitzmann, A. (ed.) IH 1999. LNCS, vol. 1768, pp. 61–76. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Böhme, R., Westfeld, A.: Breaking Cauchy model-based JPEG steganography with first order statistics. In: Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.) ESORICS 2004. LNCS, vol. 3193, pp. 125–140. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Barbier, J., Filiol, É., Mayoura, K.: Universal detection of JPEG steganography. Journal of Multimedia 2, 1–9 (2007)CrossRefGoogle Scholar
  13. 13.
    Fisk, G., Fisk, M., Papadopoulos, C., Neil, J.: Eliminating steganography in Internet traffic with active wardens. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, pp. 18–35. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Pevný, T., Fridrich, J.: Benchmarking for steganography. In: Solanki, K., Sullivan, K., Madhow, U. (eds.) IH 2008. LNCS, vol. 5284, pp. 251–267. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Cachin, C.: An information-theoretic model for steganography. Information and Computation 192, 41–56 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hundt, C., Liskiewicz, M., Wölfel, U.: Provably secure steganography and the complexity of sampling. In: Madria, S.K., et al. (eds.) ISAAC 2006. LNCS, vol. 4317, pp. 754–763. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Ker, A.D.: A capacity result for batch steganography. IEEE Signal Processing Letters 14, 525–528 (2007)CrossRefGoogle Scholar
  18. 18.
    Ker, A.D., Pevný, T., Kodovský, J., Fridrich, J.: The square root law of steganographic capacity. In: Proc. of ACM Multimedia and Security Workshop (MMSEC), Oxford, UK, pp. 107–116 (2008)Google Scholar
  19. 19.
    Filler, T., Ker, A.D., Fridrich, J.: The square root law of steganographic capacity for Markov covers. In: Delp, E.J., Wong, P.W., Dittmann, J., Memon, N.D. (eds.) Media Forensics and Security XI (Proc. of SPIE), San Jose, CA, vol. 7254 (2009)Google Scholar
  20. 20.
    Kerckhoffs, A.: La cryptographie militaire. Journal des sciences militaires IX, 5–38, 161–191 (1883), http://www.petitcolas.net/fabien/kerckhoffs/crypto_militaire_1.pdf Google Scholar
  21. 21.
    Shikata, J., Matsumoto, T.: Unconditionally secure steganography against active attacks. IEEE Trans. on Information Theory 54, 2690–2705 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Katzenbeisser, S., Petitcolas, F.A.P.: Defining security in steganographic systems. In: Delp, E.J., Wong, P.W. (eds.) Security, Steganography and Watermarking of Multimedia Contents IV (Proc. of SPIE), San Jose, CA, vol. 4675, pp. 50–56 (2002)Google Scholar
  23. 23.
    Ker, A.D.: The ultimate steganalysis benchmark. In: Proc. of ACM Multimedia and Security Workshop (MMSEC), Dallas, Texas, USA, pp. 141–147 (2007)Google Scholar
  24. 24.
    Neyman, J., Pearson, E.: On the problem of the most efficient tests of statistical hypotheses. Philosophical Transactions of the Royal Society of London. Series A (Mathematical or Physical Character) 231, 289–337 (1933)CrossRefzbMATHGoogle Scholar
  25. 25.
    Shannon, C.: Communication theory of secrecy systems. Bell System Technical Journal 28, 656–715 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ker, A.D.: Resampling and the detection of LSB matching in colour bitmaps. In: Delp, E.J., Wong, P.W. (eds.) Security, Steganography and Watermarking of Multimedia Contents VII (Proc. of SPIE), San Jose, CA, vol. 5681, pp. 1–15 (2005)Google Scholar
  27. 27.
    Ker, A.D., Böhme, R.: Revisiting weighted stego-image steganalysis. In: Delp, E.J., Wong, P.W., Dittmann, J., Memon, N.D. (eds.) Security, Forensics, Steganography and Watermarking of Multimedia Contents X (Proc. of SPIE), San Jose, CA, vol. 6819 (2008)Google Scholar
  28. 28.
    Böhme, R.: Weighted stego-image steganalysis for JPEG covers. In: Solanki, K., Sullivan, K., Madhow, U. (eds.) IH 2008. LNCS, vol. 5284, pp. 178–194. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Westfeld, A.: F5 – A steganographic algorithm. In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 289–302. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  30. 30.
    Solanki, K., Sarkar, A., Manjunath, B.S.: YASS: Yet another steganographic scheme that resists blind steganalysis. In: Furon, T., Cayre, F., Doërr, G., Bas, P. (eds.) IH 2007. LNCS, vol. 4567, pp. 16–31. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Cancelli, G., Barni, M.: MPSteg-color: A new steganographic technique for color images. In: Furon, T., Cayre, F., Doërr, G., Bas, P. (eds.) IH 2007. LNCS, vol. 4567, pp. 1–15. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  32. 32.
    Pevný, T., Fridrich, J.: Novelty detection in blind steganalysis. In: Proc. of ACM Multimedia and Security Workshop (MMSEC), Oxford, UK, pp. 167–176 (2008)Google Scholar
  33. 33.
    Fridrich, J.: Feature-based steganalysis for JPEG images and its implications for future design of steganographic schemes. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 67–81. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  34. 34.
    Kullback, S.: Information Theory and Statistics. Dover, New York (1968)zbMATHGoogle Scholar
  35. 35.
    Zhang, W., Li, S.: Security measurements of steganographic systems. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 194–204. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  36. 36.
    Korzhik, V.I., Imai, H., Shikata, J., Morales-Luna, G., Gerling, E.: On the use of Bhattacharyya distance as a measure of the detectability of steganographic systems. LNCS Trans. on Data Hiding and Multimedia Security 3, 23–32 (2008)CrossRefGoogle Scholar
  37. 37.
    Franz, E., Jerichow, A., Möller, S., Pfitzmann, A., Stierand, I.: Computer based steganography: How it works and why therefore any restrictions on cryptography are nonsense, at best. In: Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 7–21. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  38. 38.
    Zöllner, J., Federrath, H., Klimant, H., Pfitzmann, A., Piotraschke, R., Westfeld, A., Wicke, G., Wolf, G.: Modeling the security of steganographic systems. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 306–318. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  39. 39.
    Franz, E., Pfitzmann, A.: Einführung in die Steganographie und Ableitung eines neuen Stegoparadigmas (Introduction to steganography and derivation of a new stego-paradigm). Informatik Spektrum 21, 183–193 (1998)CrossRefGoogle Scholar
  40. 40.
    Franz, E., Pfitzmann, A.: Steganography secure against cover-stego-attacks. In: Pfitzmann, A. (ed.) IH 1999. LNCS, vol. 1768, pp. 29–46. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  41. 41.
    Dittmann, J.: Digitale Wasserzeichen (Digital watermarking). Springer, Heidelberg (2000)CrossRefGoogle Scholar
  42. 42.
    Craver, S., Li, E., Yu, J., Atalki, I.: A supraliminal channel in a videoconferencing application. In: Solanki, K., Sullivan, K., Madhow, U. (eds.) IH 2008. LNCS, vol. 5284, pp. 283–293. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  43. 43.
    Fridrich, J., Goljan, M., Soukal, D.: Perturbed quantization steganography with wet paper codes. In: Proc. of ACM Multimedia and Security Workshop (MMSEC), pp. 4–15. ACM Press, New York (2004)Google Scholar
  44. 44.
    Franz, E., Schneidewind, A.: Adaptive steganography based on dithering. In: Proc. of ACM Multimedia and Security Workshop (MMSEC), pp. 56–62. ACM Press, New York (2004)Google Scholar
  45. 45.
    Kharrazi, M., Sencar, H., Memon, N.: Cover selection for steganographic embedding. In: Proc. of IEEE ICIP, pp. 117–120 (2006)Google Scholar
  46. 46.
    Cayre, F., Fontaine, C., Furon, T.: Watermarking security: Theory and practice. IEEE Trans. on Signal Processing 53, 3976–3987 (2005)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Le, T.v., Kurosawa, K.: Efficient Public Key Steganography Secure Against Adaptively Chosen Stegotext Attacks. Report 2003/244. Cryptology ePrint Archive (2003), http://eprint.iacr.org/2003/244
  48. 48.
    Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. on Information Theory 29, 198–208 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Ker, A.D.: Perturbation hiding and the batch steganography problem. In: Solanki, K., Sullivan, K., Madhow, U. (eds.) IH 2008. LNCS, vol. 5284, pp. 45–59. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  50. 50.
    Kirchner, M., Böhme, R.: Tamper hiding: Defeating image forensics. In: Furon, T., Cayre, F., Doërr, G., Bas, P. (eds.) IH 2007. LNCS, vol. 4567, pp. 326–341. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Rainer Böhme
    • 1
  1. 1.Institute of Systems ArchitectureTechnische Universität DresdenDresdenGermany

Personalised recommendations