Microphone Classification Using Fourier Coefficients

  • Robert Buchholz
  • Christian Kraetzer
  • Jana Dittmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5806)


Media forensics tries to determine the originating device of a signal. We apply this paradigm to microphone forensics, determining the microphone model used to record a given audio sample. Our approach is to extract a Fourier coefficient histogram of near-silence segments of the recording as the feature vector and to use machine learning techniques for the classification. Our test goals are to determine whether attempting microphone forensics is indeed a sensible approach and which one of the six different classification techniques tested is the most suitable one for that task. The experimental results, achieved using two different FFT window sizes (256 and 2048 frequency coefficients) and nine different thresholds for near-silence detection, show a high accuracy of up to 93.5% correct classifications for the case of 2048 frequency coefficients in a test set of seven microphones classified with linear logistic regression models. This positive tendency motivates further experiments with larger test sets and further studies for microphone identification.


media forensics FFT based microphone classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kraetzer, C., Oermann, A., Dittmann, J., Lang, A.: Digital Audio Forensics: A First Practical Evaluation on Microphone and Environment Classification. In: 9th Workshop on Multimedia & Security, pp. 63–74. ACM, New York (2007)Google Scholar
  2. 2.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  3. 3.
    SHAMAN - Sustaining Heritage Access through Multivalent ArchiviNg,
  4. 4.
    SoX – Sound Exchange,
  5. 5.
    Donahl, M.: Forensische Analyse von Audiosignalen zur Mikrofonerkennung, Masters Thesis, Dept. of Computer Science, Otto-von-Guericke University Magdeburg, Germany (2008)Google Scholar
  6. 6.
    Filler, T., Fridrich, J., Goljan, M.: Using Sensor Pattern Noise for Camera Model Identification. In: Proc. ICIP 2008, San Diego, pp. 1296–1299 (2008)Google Scholar
  7. 7.
    Dirik, A.E., Sencar, H.T., Memon, N.: Digital Single Lens Reflex Camera Identification From Traces of Sensor Dust. IEEE Transactions on Information Forensics and Security 3, 539–552 (2008)CrossRefGoogle Scholar
  8. 8.
    Gloe, T., Franz, E., Winkler, A.: Forensics for flatbed scanners. In: Proceedings of the SPIE International Conference on Security, Steganography, and Watermarking of Multimedia Contents, San Jose (2007)Google Scholar
  9. 9.
    Khanna, N., Mikkilineni, A.K., Chiu, G.T., Allebach, J.P., Delp, E.J.: Survey of Scanner and Printer Forensics at Purdue University. In: Srihari, S.N., Franke, K. (eds.) IWCF 2008. LNCS, vol. 5158, pp. 22–34. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Bayram, S., Sencar, H.T., Memon, N.: Classification of Digital Camera-Models Based on Demosaicing Artifacts. Digital Investigation 5(1-2), 49–59 (2008)CrossRefGoogle Scholar
  11. 11.
    Oermann, A., Vielhauer, C., Dittmann, J.: Sensometrics: Identifying Pen Digitizers by Statistical Multimedia Signal Processing. In: SPIE Multimedia on Mobile Devices 2007, San Jose (2007)Google Scholar
  12. 12.
    Maher, R.C.: Acoustical Characterization of Gunshots. In: SAFE 2007, Washington D.C., USA, April 11-13 (2007)Google Scholar
  13. 13.
    Oermann, A., Lang, A., Dittmann, J.: Verifier-tuple for audio-forensic to determine speaker environment. In: Proc. MM & Sec 2005, New York, pp. 57–62 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Robert Buchholz
    • 1
  • Christian Kraetzer
    • 1
  • Jana Dittmann
    • 1
  1. 1.Department of Computer ScienceOtto-von-Guericke University of MagdeburgMagdeburgGermany

Personalised recommendations