Aggregating Interval Orders by Propositional Optimization

  • Daniel Le Berre
  • Pierre Marquis
  • Meltem Öztürk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5783)


Aggregating preferences for finding a consensus between several agents is an important issue in many fields, like economics, decision theory and artificial intelligence. In this paper we focus on the problem of aggregating interval orders which are special preference structures allowing the introduction of tresholds for the indifference relation. We propose to solve this problem by first translating it into a propositional optimization problem, namely the Binate Covering Problem, then to solve the latter using a max-sat solver. We discuss some properties of the proposed encoding and provide some hints about its practicability using preliminary experimental results.


Interval orders preference modelling and aggregation propositional reasoning Boolean optimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Argelich, J., Li, C.-M., Manyà, F., Planes, J.: The first and second max-sat evaluations. Journal on Satisfiability, Boolean Modeling and Computation (JSAT) 4, 251–278 (2008)zbMATHGoogle Scholar
  2. 2.
    Arrow, K.J.: Social choice and individual values, 2nd edn. J. Wiley, New York (1951/1963)zbMATHGoogle Scholar
  3. 3.
    de Condorcet, M.: Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. Imprimerie Royale, Paris (1785)Google Scholar
  4. 4.
    Coudert, O.: On solving covering problems. In: Design Automation Conference, pp. 197–202 (1996)Google Scholar
  5. 5.
    Fishburn, P.C.: Interval Orders and Interval Graphs. J. Wiley, New York (1985)zbMATHGoogle Scholar
  6. 6.
    Gibbard, A.: Social choice and the arrow conditions (unpublished, 1969)Google Scholar
  7. 7.
    Hudry, O.: Np-hardness results for the aggregation of linear orders into median orders. Annals of Operations Research 163, 63–88 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kemeny, J.G.: Mathematics without numbers. Daedalus 88, 575–591 (1959)Google Scholar
  9. 9.
    Le Berre, D., Parrain, A.: SAT4J, a SATisfiability library for java,
  10. 10.
    Luce, R.D.: Semi-orders and a theory of utility discrimination. Econometrica 24 (1956)Google Scholar
  11. 11.
    Manquinho, V., Roussel, O.: The first evaluation of pseudo-boolean solvers (pb 2005). Journal on Satisfiability, Boolean Modeling and Computation (JSAT) 2, 103–143 (2006)zbMATHGoogle Scholar
  12. 12.
    Papadimitriou, C., Steiglitz, I.: Combinatorial Optimization: algorithms and complexity. Prentice-Hall, Englewood Cliffs (1982)zbMATHGoogle Scholar
  13. 13.
    Pirlot, M., Vincke, P.: Semi Orders. Kluwer Academic, Dordrecht (1997)Google Scholar
  14. 14.
    Sen, A.K.: Collective Choice and Social Welfare. North Holland, Amsterdam (1970)zbMATHGoogle Scholar
  15. 15.
    Stanley, R.: Hyperplanes arrangements, interval orders and trees. Proc. Nat. Acad. Sci. 93, 2620–2625 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Wiener, N.: A contribution to the theory of relative position. Proc. of Cambridge Philosophical Society 17, 441–449 (1914)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Daniel Le Berre
    • 1
    • 2
    • 3
  • Pierre Marquis
    • 1
    • 2
    • 3
  • Meltem Öztürk
    • 1
    • 2
    • 3
  1. 1.Université Lille Nord de FranceLilleFrance
  2. 2.Université d’Artois, CRILLensFrance
  3. 3.CNRS, UMR 8188LensFrance

Personalised recommendations