Inverse Analysis from a Condorcet Robustness Denotation of Valued Outranking Relations

  • Raymond Bisdorff
  • Patrick Meyer
  • Thomas Veneziano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5783)


In this article we develop an indirect approach for assessing criteria significance weights from the robustness of the significance that a decision maker acknowledges for his pairwise outranking statements in a Multiple Criteria Decision Aiding process. The main result consists in showing that with the help of a mixed integer linear programming model this kind of a priori knowledge is sufficient for estimating adequate numerical significance weights.


inverse Multiple Criteria Decision Analysis significance weights ellicitation uncertainty robustness 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roy, B., Bouyssou, D.: Aide Multicritère à la Décision: Méthodes et Cas. Economica, Paris (1993)Google Scholar
  2. 2.
    Jacquet-Lagrèze, E., Siskos, Y.: Assessing a set of additive utility functions for multicriteria decision making: the UTA method. European Journal of Operational Research 10, 151–164 (1982)zbMATHCrossRefGoogle Scholar
  3. 3.
    Mousseau, V., Słowinski, R.: Inferring an Electre TRI model from assignment examples. Journal of Global Optimization 12(2), 157–174 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Mousseau, V., Dias, L.C., Figueira, J., Gomes, C., Clímaco, J.N.: Resolving inconsistencies among constraints on the parameters of an MCDA model. European Journal of Operational Research 147(1), 72–93 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Siskos, Y., Grigoroudis, E., Matsatsinis, N.F.: Uta methods. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 297–344. Springer, Boston (2005)Google Scholar
  6. 6.
    Grabisch, M., Kojadinovic, I., Meyer, P.: A review of capacity identification methods for Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package. European Journal of Operational Research 186, 766–785 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Greco, S., Mousseau, V., Słowinski, R.: Ordinal regression revisited: multiple criteria ranking using a set of additive value functions. European Journal of Operational Research 191(2), 415–435 (2008)CrossRefGoogle Scholar
  8. 8.
    Meyer, P., Marichal, J.-L., Bisdorff, R.: Disaggregation of bipolar-valued outranking relations. In: An, L.T.H., Bouvry, P., Tao, P.D. (eds.) MCO. Communications in Computer and Information Science, vol. 14, pp. 204–213. Springer, Heidelberg (2008)Google Scholar
  9. 9.
    Bisdorff, R.: Logical foundation of multicriteria preference aggregation. In: Bouyssou, D., et al. (eds.) Aiding Decisions with Multiple Criteria, pp. 379–403. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  10. 10.
    Bisdorff, R., Meyer, P., Roubens, M.: Rubis: a bipolar-valued outranking method for the best choice decision problem. 4OR: A Quarterly Journal of Operations Research 6(2), 143–165 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Barbut, M.: Médianes, Condorcet et Kendall. Mathématiques et Sciences Humaines 69, 9–13 (1980)Google Scholar
  12. 12.
    Bisdorff, R.: Concordant outranking with multiple criteria of ordinal significance. 4OR 2(4), 293–308 (2004)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Raymond Bisdorff
    • 1
  • Patrick Meyer
    • 2
    • 3
  • Thomas Veneziano
    • 1
  1. 1.Faculty of Sciences, Technology, and Communication Computer Science and Communications Research Unit Interdisciplinary Lab for Intelligent and Adaptive SystemsUniversity of LuxembourgLuxembourg
  2. 2.Institut Télécom, Télécom Bretagne, UMR CNRS 3192 Lab-STICC, Technopôle Brest Iroise CS 83818Brest Cedex 3France
  3. 3.Université européenne de Bretagne 

Personalised recommendations