Advertisement

On-the-Fly Construction, Correctness and Completeness of Model Transformations Based on Triple Graph Grammars

  • Hartmut Ehrig
  • Claudia Ermel
  • Frank Hermann
  • Ulrike Prange
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5795)

Abstract

Triple graph grammars (TGGs) are a formal and intuitive concept for the specification of model transformations. Their main advantage is an automatic derivation of operational rules for bidirectional model transformations, which simplifies specification and enhances usability as well as consistency.

In this paper we continue previous work on the formal definition of model transformations based on triple graph rules with negative application conditions (NACs). The new notion of partial source consistency enables us to construct consistent model transformations on-the-fly instead of analyzing consistency of completed model transformations.

We show the crucial properties termination, correctness and completeness (including NAC-consistency) for the model transformations resulting from our construction. Moreover, we define parallel independence for model transformation steps which allows us to perform partial-order reduction in order to improve efficiency. The results are applicable to several relevant model transformations and in particular to our example transformation from class diagrams to database models.

Keywords

Model transformation triple graph grammars correctness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  2. 2.
    Schürr, A., Klar, F.: 15 Years of Triple Graph Grammars. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 411–425. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Königs, A., Schürr, A.: Tool Integration with Triple Graph Grammars - A Survey. ENTCS 148, 113–150 (2006)Google Scholar
  4. 4.
    Guerra, E., de Lara, J.: Attributed Typed Triple Graph Transformation with Inheritance in the Double Pushout Approach. Technical Report UC3M-TR-CS-2006-00, Universidad Carlos III, Madrid (2006)Google Scholar
  5. 5.
    Taentzer, G., Ehrig, K., Guerra, E., de Lara, J., Lengyel, L., Levendovsky, T., Prange, U., Varro, D., Varro-Gyapay, S.: Model Transformation by Graph Transformation: A Comparative Study. In: Proc. WMTP 2005 (2005)Google Scholar
  6. 6.
    Guerra, E., de Lara, J.: Model View Management with Triple Graph Grammars. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 351–366. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Kindler, E., Wagner, R.: Triple Graph Grammars: Concepts, Extensions, Implementations, and Application Scenarios. Technical Report TR-ri-07-284, Universität Paderborn (2007)Google Scholar
  8. 8.
    Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information Preserving Bidirectional Model Transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 72–86. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Ehrig, H., Ermel, C., Hermann, F.: On the Relationship of Model Transformations Based on Triple and Plain Graph Grammars. In: Karsai, G., Taentzer, G. (eds.) Proc. of GraMoT 2008. ACM, New York (2008)Google Scholar
  10. 10.
    Ehrig, H., Hermann, F., Sartorius, C.: Completeness and Correctness of Model Transformations based on Triple Graph Grammars with Negative Application Conditions. Electronic Communications of the EASST 18 (to appear, 2009)Google Scholar
  11. 11.
    Ehrig, H., Prange, U.: Formal Analysis of Model Transformations Based on Triple Graph Rules with Kernels. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 178–193. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Ehrig, H., Ehrig, K., Hermann, F.: From Model Transformation to Model Integration based on the Algebraic Approach to Triple Graph Grammars. Electronic Communications of the EASST 10, 1–14 (2008)CrossRefGoogle Scholar
  13. 13.
    Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems. LNCS, vol. 1032. Springer, Heidelberg (1996)zbMATHGoogle Scholar
  14. 14.
    Ehrig, H., Ermel, C., Hermann, F., Prange, U.: On-the-Fly Construction, Correctness and Completeness of Model Transformations based on Triple Graph Grammars: Long Version. Technical Report 2009-11, TU Berlin (2009), http://www.eecs.tu-berlin.de/menue/forschung/forschungsberichte/
  15. 15.
    Ehrig, H., et al.: Fundamentals of Algebraic Graph Transformation. EATCS Monographs. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  16. 16.
    de Lara, J., Guerra, E.: Pattern-based model-to-model transformation. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 426–441. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Brandt, C., Hermann, F., Engel, T.: Security and Consistency of IT and Business Models at Credit Suisse realized by Graph Constraints, Transformation and Integration using Algebraic Graph Theory. In: Interval Mathematics. LNBIP, vol. 29, pp. 339–352. Springer, Heidelberg (2009)Google Scholar
  18. 18.
    TFS-group, TU Berlin: AGG (2009), http://tfs.cs.tu-berlin.de/agg

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hartmut Ehrig
    • 1
  • Claudia Ermel
    • 1
  • Frank Hermann
    • 1
  • Ulrike Prange
    • 1
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTechnische Universität BerlinGermany

Personalised recommendations