Advertisement

Probabilistic Model Checking of Biological Systems with Uncertain Kinetic Rates

  • Roberto Barbuti
  • Francesca Levi
  • Paolo Milazzo
  • Guido Scatena
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5797)

Abstract

We present an abstraction of the probabilistic semantics of Multiset Rewriting to formally express systems of reactions with uncertain kinetic rates. This allows biological systems modelling when the exact rates are not known, but are supposed to lie in some intervals. On these (abstract) models we perform probabilistic model checking obtaining lower and upper bounds for the probabilities of reaching states satisfying given properties. These bounds are under- and over-approximations, respectively, of the probabilities one would obtain by verifying the models with exact kinetic rates belonging to the intervals.

Keywords

probabilistic model checking systems biology uncertain kinetic rates abstract interpretation interval Markov chains 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cervesato, I., Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: A meta-notation for protocol analysis. In: CSFW, pp. 55–69 (1999)Google Scholar
  2. 2.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238–252. ACM Press, New York (1977)Google Scholar
  3. 3.
    Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: LICS, pp. 266–277. IEEE, Los Alamitos (1991)Google Scholar
  4. 4.
    Kozine, I., Utkin, L.V.: Interval-valued finite markov chains. Reliable Computing 8(2), 97–113 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Fecher, H., Leucker, M., Wolf, V.: Don’t Know in probabilistic systems. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 71–88. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Villasana, M., Radunskaya, A.: A delay differential equation model for tumor growth. J. of Math. Biol. 47, 270–294 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Kwiatkowska, M.Z.: Model checking for probability and time: from theory to practice. In: LICS, pp. 351–360. IEEE, Los Alamitos (2003)Google Scholar
  8. 8.
    Kwiatkowska, M.Z., Norman, G., Parker, D.: Prism: Probabilistic symbolic model checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)Google Scholar
  9. 9.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Asp. Comput. 6(5), 512–535 (1994)CrossRefMATHGoogle Scholar
  10. 10.
    Kearfott, R.B.: Interval computations: Introduction, uses, and resources. In: Euromath Bulletin, vol. 2, pp. 95–112. European Mathematical Trust (1996)Google Scholar
  11. 11.
    Weichselberger, K.: The theory of interval-probability as a unifying concept for uncertainty. In: Cooman, G.D., Cozman, F.G., Moral, S., Walley, P. (eds.) ISIPTA, pp. 387–396 (1999)Google Scholar
  12. 12.
    Coletta, A., Gori, R., Levi, F.: Approximating probabilistic behaviors of biological systems using abstract interpretation. ENTCS, vol. 229, pp. 165–182. Elsevier, Amsterdam (2009)MATHGoogle Scholar
  13. 13.
    D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reachability analysis of probabilistic systems by successive refinements. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp. 39–56. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
  15. 15.
    PRISM model checker, http://www.prismmodelchecker.org
  16. 16.
    Huth, M.: On finite-state approximants for probabilistic computation tree logic. Theor. Comput. Sci. 246, 113–134 (2005)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Sen, K., Viswanathan, M., Agha, G.: Model-checking markov chains in the presence of uncertainties. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 394–410. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Škulj, D.: Finite Discrete Time Markov Chains with Interval Probabilities. In: Lawry, J., Miranda, E., Bugarín, A., Li, S., Gil, M.A., Grzegorzewski, P., Hryniewicz, O. (eds.) SMPS, pp. 299–306. Springer, Heidelberg (2006)Google Scholar
  19. 19.
    Blanc, J.P.C., Hertog, D.D.: On Markov Chains with Uncertain Data. CentER Discussion Paper Series 50, Tilburg Univ., Center for Economic Research (2008)Google Scholar
  20. 20.
    Danos, V., Feret, J., Fontana, W., Krivine, J.: Abstract interpretation of cellular signalling networks. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 83–97. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Fages, F., Soliman, S.: Formal Cell Biology in Biocham. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 54–80. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Monniaux, D.: Abstract interpretation of programs as Markov decision processes. In: Sci. Comput. Program, vol. 58, pp. 179–205. Springer, Heidelberg (2005)Google Scholar
  23. 23.
    Di Pierro, A., Wiklicky, H.: Concurrent constraint programming: towards probabilistic abstract interpretation. In: PPDP, pp. 127–138. ACM, New York (2000)CrossRefGoogle Scholar
  24. 24.
    Wilkinson, S.J., Benson, N., Kell, D.B.: Proximate parameter tuning for biochemical networks with uncertain kinetic parameters. In: Mol. bioSys., vol. 4, pp. 74–97. RSC Publishing (2008)Google Scholar
  25. 25.
    Batt, G., Belta, C., Weiss, R.: Model Checking Genetic Regulatory Networks with Parameter Uncertainty. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 61–75. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Manca, V.: The Metabolic Algorithm for P Systems: Principles and Applications. Theor. Comput. Sci. 404, 142–155 (2008)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Donaldson, R., Gilbert, D.: A Model Checking Approach to the Parameter Estimation of Biochemical Pathways. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 269–287. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Fages, F., Soliman, S.: Model Revision from Temporal Logic Properties in Systems Biology. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.) Probabilistic Inductive Logic Programming. LNCS, vol. 4911, pp. 287–304. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric probabilistic transition systems for system design and analysis. Form. Asp. Comput. 19, 93–109 (2007)CrossRefMATHGoogle Scholar
  30. 30.
    Han, T., Katoen, J.P., Mereacre, A.: Approximate Parameter Synthesis for Probabilistic Time-Bounded Reachability. In: RTSS, pp. 173–182. IEEE, Los Alamitos (2008)Google Scholar
  31. 31.
    Katoen, J.P., Klink, D., Leucker, M., Wolf, V.: Three-Valued Abstraction for Continuous-Time Markov Chains. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 311–324. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  32. 32.
    Baier, C., Hermanns, H., Katoen, J.P., Haverkort, B.R.: Efficient computation of time-bounded reachability probabilities in uniform continuous-time Markov decision processes. Theor. Comput. Sci. 345, 2–26 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Roberto Barbuti
    • 1
  • Francesca Levi
    • 1
  • Paolo Milazzo
    • 1
  • Guido Scatena
    • 2
  1. 1.Dip. di InformaticaUniv. di PisaPisaItaly
  2. 2.IMT Lucca Inst. for Advanced StudiesLuccaItaly

Personalised recommendations