Formalisms for Specifying Markovian Population Models

  • Thomas A. Henzinger
  • Barbara Jobstmann
  • Verena Wolf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5797)

Abstract

We compare several languages for specifying Markovian population models such as queuing networks and chemical reaction networks. These languages —matrix descriptions, stochastic Petri nets, stoichiometric equations, stochastic process algebras, and guarded command models— all describe continuous-time Markov chains, but they differ according to important properties, such as compositionality, expressiveness and succinctness, executability, ease of use, and the support they provide for checking the well-formedness of a model and for analyzing a model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods in System Design 15(1), 7–48 (1999)CrossRefGoogle Scholar
  2. 2.
    Anderson, W.: Continuous-time Markov chains: An applications-oriented approach. Springer, Heidelberg (1991)CrossRefMATHGoogle Scholar
  3. 3.
    Baarir, S., Beccuti, M., Cerotti, D., De Pierro, M., Donatelli, S., Franceschinis, G.: The GreatSPN tool: recent enhancements. SIGMETRICS Perform. Eval. Rev. 36(4), 4–9 (2009)CrossRefGoogle Scholar
  4. 4.
    Bernardo, M., Gorrieri, R.: Extended Markovian process algebra. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 315–330. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  5. 5.
    Buchholz, P.: Exact and ordinary lumpability in finite markov chains. Journal of applied probability 31(1), 59–75 (1994)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Buchholz, P., Dayar, T.: Block SOR preconditioned projection methods for Kronecker structured Markovian representations. SIAM Journal on Scientific Computing 26(4), 1289–1313 (2005)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Buchholz, P., Sanders, W.H.: Approximate computation of transient results for large Markov chains. In: Proc. of QEST 2004, pp. 126–135. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  8. 8.
    Ciardo, G., Jones III, R.L., Miner, A.S., Siminiceanu, R.I.: Logic and stochastic modeling with SMART. Perform. Eval. 63(6), 578–608 (2006)CrossRefGoogle Scholar
  9. 9.
    Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for modelling and analysis of biological systems. Theoretical Computer Science (to appear, 2009)Google Scholar
  10. 10.
    Clarke, E., Fujita, M., McGeer, P., Yang, J., Zhao, X.: Multi-terminal binary decision diagrams: An ecient data structure for matrix representation. In: Proc. IWLS 1993 (1993)Google Scholar
  11. 11.
    Deavours, D.D., Sanders, W.H.: “On-the-fly” solution techniques for stochastic Petri nets and extensions. In: IEEE TSE, pp. 132–141 (1997)Google Scholar
  12. 12.
    Didier, F., Henzinger, T., Mateescu, M., Wolf, V.: Approximation of event probabilities in noisy cellular processes. In: Proc. of CMSB. LNCS, Springer, Heidelberg (to appear, 2009)Google Scholar
  13. 13.
    Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs. Commun. ACM 18(8), 453–457 (1975)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Fernandes, P., Plateau, B., Stewart, W.J.: Numerical evaluation of stochastic automata networks. In: Proc. of MASCOTS 1995 (1995)Google Scholar
  15. 15.
    Fisher, J., Henzinger, T.A.: Executable cell biology. Nature Biotechnology 25, 1239–1249 (2007)CrossRefGoogle Scholar
  16. 16.
    Gardner, T., Cantor, C., Collins, J.: Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000)CrossRefGoogle Scholar
  17. 17.
    Gillespie, D.T.: Markov Processes. Academic Press, London (1992)MATHGoogle Scholar
  18. 18.
    Götz, N., Herzog, U., Rettelbach, M.: TIPP – a language for timed processes and performance evaluation. Technical Report Technical Report 4/92, IMMD VII, University of Erlangen-Nurnberg (1992)Google Scholar
  19. 19.
    Gross, D., Miller, D.: The randomization technique as a modeling tool and solution procedure for transient Markov processes. Operations Research 32(2), 926–944 (1984)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Haas, P.J.: Stochastic Petri Nets: Modelling, Stability, Simulation. Springer, Heidelberg (2002)CrossRefMATHGoogle Scholar
  21. 21.
    Henzinger, T., Mateescu, M., Wolf, V.: Sliding window abstraction for infinite Markov chains. In: Proc. CAV. LNCS, Springer, Heidelberg (to appear, 2009)Google Scholar
  22. 22.
    Hermanns, H.: An operator for symmetry representation and exploitation in stochastic process algebras. In: Proc. of PAPM 1997, pp. 55–70 (1997)Google Scholar
  23. 23.
    Hillston, J.: The nature of synchronisation. In: Proc. of PAPM 1994, pp. 51–70 (1994)Google Scholar
  24. 24.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)CrossRefMATHGoogle Scholar
  25. 25.
    Horton, G., Kulkarni, V.G., Nicol, D.M., Trivedi, K.S.: Fluid stochastic Petri nets: Theory, applications, and solution techniques. European Journal of Operational Research 105(1), 184–201 (1998)CrossRefMATHGoogle Scholar
  26. 26.
    Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. BIOINFORMATICS 19(4), 524–531 (2003)CrossRefGoogle Scholar
  27. 27.
    Katoen, J.-P., Khattri, M., Zapreev, I.S.: A Markov reward model checker. In: Proc. of QEST 2005, pp. 243–244. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  28. 28.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic model checking for performance and reliability analysis. ACM SIGMETRICS Performance Evaluation Review 36(4), 40–45 (2009)CrossRefGoogle Scholar
  29. 29.
    Law, A., Kelton, W.: Simulation Modeling and Analysis. McGraw-Hill, New York (2000)MATHGoogle Scholar
  30. 30.
    Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with generalized stochastic petri nets. Sigm. Perform. Eval. Rev. 26(2), 2 (1998)CrossRefMATHGoogle Scholar
  31. 31.
    McAdams, H.H., Arkin, A.: It’s a noisy business! Trends in Genetics 15(2), 65–69 (1999)CrossRefGoogle Scholar
  32. 32.
    Paulsson, J.: Summing up the noise in gene networks. Nature 427(6973), 415–418 (2004)CrossRefGoogle Scholar
  33. 33.
    Plateau, B.: On the stochastic structure of parallelism and synchronization models for distributed algorithms. In: Proc. of the Sigmetrics Conference on Measurement and Modeling of Computer Systems, pp. 147–154 (1985)Google Scholar
  34. 34.
    Priami, C.: Stochastic pi-calculus. The Computer Journal 38(7), 578–589 (1995)CrossRefGoogle Scholar
  35. 35.
    Rao, C., Wolf, D., Arkin, A.: Control, exploitation and tolerance of intracellular noise. Nature 420(6912), 231–237 (2002)CrossRefGoogle Scholar
  36. 36.
    Reuter, G.E.H.: Competition processes. In: Proc. 4th Berkeley Symp. Math. Statist. Prob., vol. 2, pp. 421–430. Univ. of California Press, Berkeley (1961)Google Scholar
  37. 37.
    Rutten, J., Kwiatkowska, M., Norman, G., Parker, D.: Mathematical Techniques for Analyzing Concurrent and Probabilistic Systems. CRM Monograph Series, vol. 23. American Mathematical Society, Providence (2004)Google Scholar
  38. 38.
    Sanders, W.H., Ers, Y., Meyer, J.: Reduced base model construction methods for stochastic activity networks. In: Proc. of PNPM 1989, vol. 11, pp. 74–84 (1989)Google Scholar
  39. 39.
    Srivastava, R., You, L., Summers, J., Yin, J.: Stochastic vs. deterministic modeling of intracellular viral kinetics. Journal of Theoretical Biology 218, 309–321 (2002)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1995)Google Scholar
  41. 41.
    Stewart, W.J., Atif, K., Plateau, B.: The numerical solution of stochastic automata networks. European Journal of Operational Research 86(3), 503–525 (1995)CrossRefMATHGoogle Scholar
  42. 42.
    Swain, P.S., Elowitz, M.B., Siggia, E.D.: Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. of Sci. 99(20), 12795–12800 (2002)CrossRefGoogle Scholar
  43. 43.
    Tian, T., Burrage, K.: Stochastic models for regulatory networks of the genetic toggle switch. Proc. Natl. Acad. Sci. 103(22), 8372–8377 (2006)CrossRefGoogle Scholar
  44. 44.
    Turner, T.E., Schnell, S., Burrage, K.: Stochastic approaches for modelling in vivo reactions. Computational Biology and Chemistry 28, 165–178 (2004)CrossRefMATHGoogle Scholar
  45. 45.
    Wilkinson, D.J.: Stochastic Modelling for Systems Biology. Chapman & Hall, Boca Raton (2006)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Thomas A. Henzinger
    • 1
    • 2
  • Barbara Jobstmann
    • 1
  • Verena Wolf
    • 1
    • 3
  1. 1.EPFLSwitzerland
  2. 2.IST Austria (Institute of Science and TechnologyAustria
  3. 3.Saarland UniversityGermany

Personalised recommendations