Avoiding Bias in Text Clustering Using Constrained K-means and May-Not-Links

  • M. Eduardo Ares
  • Javier Parapar
  • Álvaro Barreiro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5766)

Abstract

In this paper we present a new clustering algorithm which extends the traditional batch k-means enabling the introduction of domain knowledge in the form of Must, Cannot, May and May-Not rules between the data points. Besides, we have applied the presented method to the task of avoiding bias in clustering. Evaluation carried out in standard collections showed considerable improvements in effectiveness against previous constrained and non-constrained algorithms for the given task.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31(3), 264–323 (1999)CrossRefGoogle Scholar
  2. 2.
    Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys 34(1), 1–47 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Basu, S., Davidson, I., Wagstaff, K.: Constrained Clustering: Advances in Algorithms, Theory, and Applications. Chapman & Hall/CRC, Boca Raton (2008)MATHGoogle Scholar
  4. 4.
    Yang, H., Callan, J.: Near-duplicate detection by instance-level constrained clustering. In: Proc. of SIGIR 2006, pp. 421–428 (2006)Google Scholar
  5. 5.
    Ji, X., Xu, W.: Document clustering with prior knowledge. In: Proc. of SIGIR 2006, pp. 405–412 (2006)Google Scholar
  6. 6.
    Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: Proc. of ICML 2000, pp. 1103–1110 (2000)Google Scholar
  7. 7.
    Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S.: Constrained k-means clustering with background knowledge. In: Proc. of ICML 2001, pp. 577–584 (2001)Google Scholar
  8. 8.
    Klein, D., Kamvar, S.D., Manning, C.D.: From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In: Proc. of ICML 2002, pp. 307–314 (2002)Google Scholar
  9. 9.
    Gondek, D., Hofmann, T.: Non-redundant data clustering. In: Proc. of ICDM 2004, pp. 75–82 (2004)Google Scholar
  10. 10.
    Bae, E., Bailey, J.: COALA: A novel approach for the extraction of an alternate clustering of high quality and high dissimilarity. In: Proc. of ICDM 2006, pp. 53–62 (2006)Google Scholar
  11. 11.
    Davidson, I., Qi, Z.: Finding alternative clustering using constraints. In: Proc. of ICDM 2008, pp. 773–778 (2008)Google Scholar
  12. 12.
    Cui, Y., Fern, X.Z., Dy, J.G.: Non-redundant multi-view clustering via orthogonalization. In: Proc. of ICDM 2007, pp. 133–142 (2007)Google Scholar
  13. 13.
    McQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proc. of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)Google Scholar
  14. 14.
    Pantel, P., Lin, D.: Document clustering with committees. In: Proc. of SIGIR 2002, pp. 199–206 (2002)Google Scholar
  15. 15.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)CrossRefMATHGoogle Scholar
  16. 16.
    Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning, with application to clustering with side-information. In: Advances in Neural Information Processing Systems, vol. 15, pp. 505–512. MIT Press, Cambridge (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • M. Eduardo Ares
    • 1
  • Javier Parapar
    • 1
  • Álvaro Barreiro
    • 1
  1. 1.IRLab, Department of Computer ScienceUniversity of A CoruñaSpain

Personalised recommendations