Advertisement

Spatio-Temporal-Thematic Analysis of Citizen Sensor Data: Challenges and Experiences

  • Meenakshi Nagarajan
  • Karthik Gomadam
  • Amit P. Sheth
  • Ajith Ranabahu
  • Raghava Mutharaju
  • Ashutosh Jadhav
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5802)

Abstract

We present work in the spatio-temporal-thematic analysis of citizen-sensor observations pertaining to real-world events. Using Twitter as a platform for obtaining crowd-sourced observations, we explore the interplay between the 3 dimensions in extracting insightful summaries of observations. We present our experiences in building a web mashup application, Twitris[1] that also facilitates the spatio-temporal-thematic exploration of social signals underlying events.

Keywords

Association Strength Temporal Bias Event Descriptor Thematic Score Focus Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Twitris: Twitter through space, time and theme, http://twitris.dooduh.com
  2. 2.
    Jain, R.: Experiential computing. Commun. ACM 46(7), 48–55 (2003)CrossRefGoogle Scholar
  3. 3.
    Zhao, Q., Mitra, P., Chen, B.: Temporal and information flow based event detection from social text streams. In: AAAI, pp. 1501–1506 (2007)Google Scholar
  4. 4.
    Yang, Y., Pierce, T., Carbonell, J.: A study of retrospective and on-line event detection. In: SIGIR 1998, pp. 28–36. ACM, New York (1998)CrossRefGoogle Scholar
  5. 5.
    Kumar, R., Mahadevan, U., Sivakumar, D.: A graph-theoretic approach to extract storylines from search results. In: KDD, pp. 216–225 (2004)Google Scholar
  6. 6.
    Adam, E.: Fighter cockpits of the future, October 1993, pp. 318–323 (1993)Google Scholar
  7. 7.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing and Management 24(5), 513–523 (1988)CrossRefGoogle Scholar
  8. 8.
    Turney, P.: Extraction of keyphrases from text: Evaluation of four algorithms. Technical report, National Research Council, Institute for Information Technology (1997)Google Scholar
  9. 9.
    Church, K.W., Hanks, P.: Word association norms, mutual information, and lexicography. In: Proceedings of the 27th annual meeting on ACL (1989)Google Scholar
  10. 10.
    Thomas, C., Mehra, P., Brooks, R., Sheth, A.P.: Growing fields of interest - using an expand and reduce strategy for domain model extraction. In: Web Intelligence, pp. 496–502 (2008)Google Scholar
  11. 11.
    Klein, G., Moon, B., Hoffman, R.: Making sense of sensemaking 1: alternative perspectives. IEEE Intelligent Systems 21(4), 70–73 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Meenakshi Nagarajan
    • 1
  • Karthik Gomadam
    • 1
  • Amit P. Sheth
    • 1
  • Ajith Ranabahu
    • 1
  • Raghava Mutharaju
    • 1
  • Ashutosh Jadhav
    • 1
  1. 1.Knoesis CenterWright State UniversityDaytonUSA

Personalised recommendations