Spatio-Temporal-Thematic Analysis of Citizen Sensor Data: Challenges and Experiences

  • Meenakshi Nagarajan
  • Karthik Gomadam
  • Amit P. Sheth
  • Ajith Ranabahu
  • Raghava Mutharaju
  • Ashutosh Jadhav
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5802)

Abstract

We present work in the spatio-temporal-thematic analysis of citizen-sensor observations pertaining to real-world events. Using Twitter as a platform for obtaining crowd-sourced observations, we explore the interplay between the 3 dimensions in extracting insightful summaries of observations. We present our experiences in building a web mashup application, Twitris[1] that also facilitates the spatio-temporal-thematic exploration of social signals underlying events.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Twitris: Twitter through space, time and theme, http://twitris.dooduh.com
  2. 2.
    Jain, R.: Experiential computing. Commun. ACM 46(7), 48–55 (2003)CrossRefGoogle Scholar
  3. 3.
    Zhao, Q., Mitra, P., Chen, B.: Temporal and information flow based event detection from social text streams. In: AAAI, pp. 1501–1506 (2007)Google Scholar
  4. 4.
    Yang, Y., Pierce, T., Carbonell, J.: A study of retrospective and on-line event detection. In: SIGIR 1998, pp. 28–36. ACM, New York (1998)CrossRefGoogle Scholar
  5. 5.
    Kumar, R., Mahadevan, U., Sivakumar, D.: A graph-theoretic approach to extract storylines from search results. In: KDD, pp. 216–225 (2004)Google Scholar
  6. 6.
    Adam, E.: Fighter cockpits of the future, October 1993, pp. 318–323 (1993)Google Scholar
  7. 7.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing and Management 24(5), 513–523 (1988)CrossRefGoogle Scholar
  8. 8.
    Turney, P.: Extraction of keyphrases from text: Evaluation of four algorithms. Technical report, National Research Council, Institute for Information Technology (1997)Google Scholar
  9. 9.
    Church, K.W., Hanks, P.: Word association norms, mutual information, and lexicography. In: Proceedings of the 27th annual meeting on ACL (1989)Google Scholar
  10. 10.
    Thomas, C., Mehra, P., Brooks, R., Sheth, A.P.: Growing fields of interest - using an expand and reduce strategy for domain model extraction. In: Web Intelligence, pp. 496–502 (2008)Google Scholar
  11. 11.
    Klein, G., Moon, B., Hoffman, R.: Making sense of sensemaking 1: alternative perspectives. IEEE Intelligent Systems 21(4), 70–73 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Meenakshi Nagarajan
    • 1
  • Karthik Gomadam
    • 1
  • Amit P. Sheth
    • 1
  • Ajith Ranabahu
    • 1
  • Raghava Mutharaju
    • 1
  • Ashutosh Jadhav
    • 1
  1. 1.Knoesis CenterWright State UniversityDaytonUSA

Personalised recommendations