Clustering of Social Tagging System Users: A Topic and Time Based Approach

  • Vassiliki Koutsonikola
  • Athena Vakali
  • Eirini Giannakidou
  • Ioannis Kompatsiaris
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5802)


Under Social Tagging Systems, a typical Web 2.0 application, users label digital data sources by using freely chosen textual descriptions (tags). Mining tag information reveals the topic-domain of users interests and significantly contributes in a profile construction process. In this paper we propose a clustering framework which groups users according to their preferred topics and the time locality of their tagging activity. Experimental results demonstrate the efficiency of the proposed approach which results in more enriched time-aware users profiles.


Social Tagging Systems user clustering time topic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wal, V.: Explaining and showing broad and narrow folksonomies. Blog post 2005-02-01,
  2. 2.
    Gemmell, J., Shepitsen, A., Mobasher, M., Burke, R.: Personalization in Folksonomies Based on Tag Clustering. In: 6th Workshop on Intelligent Techniques for Web Personalization and Recommender Systems, pp. 259–266. ACM, Chicago (2008)Google Scholar
  3. 3.
    Diederich, J., Iofciu, T.: Finding communities of practice from user profiles based on folksonomies. In: 1st International Workshop on Building Technology Enhanced Learning Solutions for Communities of Practice, Crete, Greece (2006)Google Scholar
  4. 4.
    Hotho, A., Jaschke, R., Schmitz, C., Stumme, G.: Information Retrieval in Folksonomies: Search and Ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 411–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Au Yeung, C.M., Gibbins, N., Shadbolt, N.: Discovering and Modelling Multiple Interests of Users in Collaborative Tagging Systems. In: 2008 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology Workshops, Sydney, Australia (2008)Google Scholar
  6. 6.
    Dichev, C., Xu, J., Dicheva, D., Zhang, J.: A Study on Community Formation in Collaborative Tagging Systems. In: IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, pp. 13–16. IEEE Computer Society, Sydney (2008)CrossRefGoogle Scholar
  7. 7.
    Shepitsen, A., Gemmell, J., Mobasher, B., Burke, R.: Personalized recommendation in social tagging systems using hierarchical clustering. In: 2008 ACM conference on Recommender systems, pp. 259–266. ACM, New York (2008)CrossRefGoogle Scholar
  8. 8.
    Michlmayr, E., Cayzer, S.: Learning User Profiles from Tagging Data and Leveraging them for Personal(ized) Information Access. In: 16th International World Wide Web Conference (WWW 2007) Workshop on Tagging and Metadata for Social Information Organization (2007)Google Scholar
  9. 9.
    Au Yeung, C.M., Gibbins, N., Shadbolt, N.: A Study of User Profile Generation from Folksonomies. In: Social Web and Knowledge Management, Social Web 2008 Workshop at WWW 2008, Beijing, China. (2008)Google Scholar
  10. 10.
    Petridou, S., Koutsonikola, V., Vakali, A., Papadimitriou, G.: Time Aware Web Users Clustering. IEEE Transactions on Knowledge and Data Engineering 20(5), 653–667 (2008)CrossRefGoogle Scholar
  11. 11.
    Wu, Z., Palmer, M.: Verm semantics and lexical selection. In: 32nd annual meeting of the association for computational linguistics, Las Cruces, New Mexico, pp. 133–138 (1994)Google Scholar
  12. 12.
    Fellbaum: WordNet, an electronic lexical database. MIT Press, Cambridge (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Vassiliki Koutsonikola
    • 1
  • Athena Vakali
    • 1
  • Eirini Giannakidou
    • 1
    • 2
  • Ioannis Kompatsiaris
    • 2
  1. 1.Department of InformaticsAristotle UniversityThessalonikiGreece
  2. 2.Informatics and Telematics InstituteCERTHThermi-ThessalonikiGreece

Personalised recommendations