Multivariate Watershed Segmentation of Compositional Data

  • Michael Hanselmann
  • Ullrich Köthe
  • Bernhard Y. Renard
  • Marc Kirchner
  • Ron M. A. Heeren
  • Fred A. Hamprecht
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5810)


Watershed segmentation of spectral images is typically achieved by first transforming the high-dimensional input data into a scalar boundary indicator map which is used to derive the watersheds. We propose to combine a Random Forest classifier with the watershed transform and introduce three novel methods to obtain scalar boundary indicator maps from class probability maps. We further introduce the multivariate watershed as a generalization of the classic watershed approach.


Compositional Data Imaging Mass Spectrometry Watershed Algorithm Watershed Segmentation Basin Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Digabel, H., Lantuéjoul, C.: Iterative algorithms. In: Proc. 2nd Europ. Symp. Quant. Anal. of Microstr. in Material Science, Biology and Medicine, pp. 85–99 (1978)Google Scholar
  2. 2.
    Roerdink, J.B.T.M., Meijster, A.: The watershed transform: Definitions, algorithms and parallelization strategies. Fundamenta Informaticae 41, 187–228 (2001)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Lezoray, O.: Supervised automatic histogram clustering and watershed segmentation. Image Anal. Stereol. 22, 113–120 (2003)CrossRefGoogle Scholar
  4. 4.
    Chang, C.Y., Shie, W.S., Wang, J.H.: Color image segmentation via fuzzy feature tuning and feature adjustment. In: Conf. on Syst., Man & Cybernetics, vol. 4, p. 6 (2002)Google Scholar
  5. 5.
    Huguet, A.B., de Andrade, M.C., Carceroni, R.L., Araujo, A.A.: Color-based watershed segmentation of low-altitude aerial images. In: 17. Brazilian Symp. on Comp. Graphics and Image Proc., pp. 138–145 (2004)Google Scholar
  6. 6.
    Noyel, G., Angulo, J., Jeulin, D., Balvay, D., Cuenod, C.-A.: Filtering, segmentation and region classification by hyperspectral mathematical morphology of DCE-MRI series for angiogenesis imaging. In: Intern. Symp. on Biomedical Imaging: From Nano to Macro, pp. 1517–1520 (2008)Google Scholar
  7. 7.
    McDonnell, L.A., Heeren, R.M.A.: Imaging mass spectrometry. Mass Spectrometry Reviews 26, 606–643 (2006)CrossRefGoogle Scholar
  8. 8.
    Moffat, J., et al.: A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124(6), 1283–1298 (2006)CrossRefGoogle Scholar
  9. 9.
    Scheunders, P.: Multivalued image segmentation based on first fundamental form. In: Proc. of the Intern. Conf. on Image Anal. and Processing, pp. 185–190 (2001)Google Scholar
  10. 10.
    Li, P., Xiao, X.: Evaluation of multiscale morphological segmentation of multispectral imagery for land cover classification. In: Proc. of the IEEE Geoscience and Remote Sensing Symposium, vol. 4, pp. 2676–2679 (2004)Google Scholar
  11. 11.
    Noyel, G., Angulo, J., Jeulin, D.: Morphological segmentation of hyperspectral images. Image Anal. Stereol. 26, 101–109 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Malpica, N., Ortuno, J.E., Santos, A.: A multichannel watershed-based algorithm for supervised texture segmentation. Patt. Rec. Letters 24, 1545–1554 (2003)CrossRefzbMATHGoogle Scholar
  13. 13.
    Karvelis, P.S., et al.: Region based segmentation and classification of multispectral chromosome images. IEEE Trans. on Medical Imaging 27, 697–708 (2008)CrossRefGoogle Scholar
  14. 14.
    Zhang, Y., Feng, X., Le., X.: Segmentation on multispectral remote sensing image using watershed transformation. Congr. on Image & Sign. Proc. 4, 773–777 (2008)Google Scholar
  15. 15.
    Angulo, J., Jeulin, D.: Stochastic watershed segmentation. In: Intern. Symp. on Mathematical Morphology, vol. 8, pp. 265–276 (2007)Google Scholar
  16. 16.
    Noyel, G., Angulo, J., Jeulin, D.: Random germs and stochastic watershed for unsupervised multispectral image segmentation. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part III. LNCS (LNAI), vol. 4694, pp. 17–24. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Soille, P.: Morphological Image Analysis. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  18. 18.
    Aitchison, J.: The Statistical Analysis of Compositional Data. Monographs on Statistics and Applied Probability. Chapman and Hall, Boca Raton (1986)CrossRefGoogle Scholar
  19. 19.
    Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. on PAMI 13, 583–598 (1991)CrossRefGoogle Scholar
  20. 20.
    Meyer, F.: Topographic distance and watersheds lines. Sig. Proc. 38, 113–125 (1994)CrossRefzbMATHGoogle Scholar
  21. 21.
    Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)CrossRefzbMATHGoogle Scholar
  22. 22.
    Ulintz, P.J., Zhu, J., Qin, Z.S., Andrews, P.C.: Improved classification of mass spectrometry database search results using newer machine learning approaches. Molecular and Cellular Proteomics 5, 497–509 (2006)CrossRefGoogle Scholar
  23. 23.
    Hanselmann, M., et al.: Concise representation of mass spectrometry images by probabilistic latent semantic analysis. Anal. Chem. 80(24), 9649–9658 (2008)CrossRefGoogle Scholar
  24. 24.
    Hanselmann, M., et al.: Toward Digital Staining using Imaging Mass Spectrometry and Random Forests. J. of Prot. Res. (2009) DOI: 10.1021/pr900253yGoogle Scholar
  25. 25.
    Casella, G., Berger, R.L.: Statistical Inference. Duxbury Advanced Series (2002)Google Scholar
  26. 26.
    Godtliebsen, F., Marron, J.S., Chaudhuri, P.: Significance in scale space for bivariate density estimation. Journal of Comp. and Graph. Stat. 11, 1–21 (2002)Google Scholar
  27. 27.
    Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. Trans. on Patt. Anal. and Mach. Intelligence 24(5), 603–619 (2002)CrossRefGoogle Scholar
  28. 28.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. Proc. of the Conf. on Computer Vision, 836–846 (1998)Google Scholar
  29. 29.
    Grimaud, M.: New measure of contrast: the dynamics. Image Algebra and Morphological Image Processing III, 292–305 (1992)Google Scholar
  30. 30.
    Brun, L., Mokhtari, M., Meyer, F.: Hierarchical watersheds within the combinatorial pyramid framework. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 34–44. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  31. 31.
    Baddeley, A.J.: An error metric for binary images. Robust Comp. Vis., 59–78 (1992)Google Scholar
  32. 32.
    Rosenfeld, A., Pfaltz, J.: Sequential operations in digital picture processing. Robust Computer Vision 13(4), 471–494 (1966)zbMATHGoogle Scholar
  33. 33.
    Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American Mathematical Monthly 69, 9–14 (1962)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michael Hanselmann
    • 1
  • Ullrich Köthe
    • 1
  • Bernhard Y. Renard
    • 1
  • Marc Kirchner
    • 1
  • Ron M. A. Heeren
    • 2
  • Fred A. Hamprecht
    • 1
  1. 1.Heidelberg Collaboratory for Image ProcessingUniversity of HeidelbergGermany
  2. 2.FOM-Institute for Atomic and Molecular PhysicsAmsterdamThe Netherlands

Personalised recommendations