Advertisement

A Multi-agent System to Learn from Oceanic Satellite Image Data

  • Rosa Cano
  • Angélica González
  • Juan F. de Paz
  • Sara Rodríguez
Conference paper
  • 1.5k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5788)

Abstract

This paper presents a multiagent architecture constructed for learning from the interaction between the atmosphere and the ocean. The ocean surface and the atmosphere exchange carbon dioxide, and this process is modeled by means of a multiagent system with learning capabilities. The proposed multiagent architecture incorporates CBR-agents to monitor the parameters that affect the interaction and to facilitate the creation of models. The system has been tested and this paper presents the results obtained.

Keywords

CBR-BDI Air-Sea Monitoring Evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bajo, J., Corchado, J.M.: Evaluation and monitoring of the air-sea interaction using a CBR-Agents approach. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 50–62. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Bajo, J., Corchado, J.M., de Paz, Y., de Paz, J.F., Rodríguez, S., Martín, A., Abraham, A.: SHOMAS: Intelligent Guidance and Suggestions in Shopping Centres. Applied Soft Computing 9(2), 851–862 (2009)CrossRefGoogle Scholar
  3. 3.
    Bajo, J., de Paz, J.F., de Paz, Y., Corchado, J.M.: Integrating Case-based Planning and RPTW Neural Networks to Construct an Intelligent Environment for Health Care. Expert Systems with Applications, Part 2 36(3), 5844–5858 (2009)CrossRefGoogle Scholar
  4. 4.
    Bratman, M.E.: Intentions, Plans and Practical Reason. Harvard University Press, Cambridge (1987)Google Scholar
  5. 5.
    Bellifime, F., Poggi, A., Rimasa, G.: JADE: a FIPA2000 compliant agent development environement. In: Proceedings of the 5th international conference on autonomous agents. ACM, New York (2001)Google Scholar
  6. 6.
    Corchado, J.M., Lees, B.: A Hybrid Case-based Model for Forecasting. Applied Artificial Intelligence 15(2), 105–127 (2001)CrossRefGoogle Scholar
  7. 7.
    Corchado, J.M., Laza, R.: Constructing Deliberative Agents with Case-based Reasoning Technology. International Journal of Intelligent Systems 18(12), 1227–1241 (2003)CrossRefGoogle Scholar
  8. 8.
    Corchado, J.M., Bajo, J., Abraham, A.: GERAmI: Improving the delivery of health care. IEEE Intelligent Systems 23(2), 19–25 (2008)CrossRefGoogle Scholar
  9. 9.
    Corchado, J.M., Bajo, J., de Paz, Y., Tapia, D.: Intelligent Environment for Monitoring Alzheimer Patients, Agent Technology for Health Care. Decision Support Systems 34(2), 382–396 (2008)CrossRefGoogle Scholar
  10. 10.
    Corchado, J.M., Aiken, J., Corchado, E., Lefevre, N., Smyth, T.: Quantifying the Ocean’s CO2 Budget with a CoHeL-IBR System. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 533–546. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Dransfeld, S., Tatnall, A.R., Robinson, I.S., Mobley, C.D.: A comparison of Multi-layer Perceptron and multilinear regression algorithms for the inversion of synthetic ocean colour spectra. Int. J. Remote Sens. 25(21), 4829–4834 (2004)CrossRefGoogle Scholar
  12. 12.
    Dransfeld, S., Tatnall, A.R., Robinson, I.S., Mobley, C.D.: Prioritizing ocean colour channels by neural network input reflectance perturbation. Int. J. Remote Sens. 26(5), 1043–1048 (2005)CrossRefGoogle Scholar
  13. 13.
    De Paz, Y.D.R.: Mixture Weibull distribution using artificial neural networks with censurated data PHD thesis, ch. 3 (2005)Google Scholar
  14. 14.
    Lefevre, N., Aiken, J., Rutllant, J., Daneri, G., Lavender, S., Smyth, T.: Observations of pCO2 in the coastal upwelling off Chile: Sapatial and temporal extrapolation using satellite data. Journal of Geophysical research 107 (2002)Google Scholar
  15. 15.
    Montaño, J.J., Palmer, A.: Artificial Neural Networks, opening the black box. Metodología de las Ciencias del Comportamiento 4(1), 77–93 (2002)Google Scholar
  16. 16.
    Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: Implementing a BDI-Infrastructure for JADE Agents. EXP - In Search of Innovation (Special Issue on JADE) 3(3), 76–85 (2003)Google Scholar
  17. 17.
    Santamaría, J., Nieto, J.: Los agujeros del cambio climático. World Watch (12), 62–65 (2000)Google Scholar
  18. 18.
    Takahashi, T., Olafsson, J., Goddard, J.G., Chipman, D.W., Sutherland, S.C.: Seasonal Variation of CO2 and nutrients in the High-latitude surface oceans: a comparative study. Global biochemical Cycles 7(4), 843–878 (1993)CrossRefGoogle Scholar
  19. 19.
    Wooldridge, M., Jennings, N.R.: Agent Theories, Architectures, and Languages: a Survey. In: Wooldridge, M., Jennings, N.R. (eds.) Intelligent Agents, pp. 1–22. Springer, Heidelberg (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Rosa Cano
    • 1
  • Angélica González
    • 1
  • Juan F. de Paz
    • 1
  • Sara Rodríguez
    • 1
  1. 1.Departamento Informática y AutomáticaUniversidad de SalamancaSalamancaSpain

Personalised recommendations