Spherical Harmonics and Distance Transform for Image Representation and Retrieval

  • Atul Sajjanhar
  • Guojun Lu
  • Dengsheng Zhang
  • Jingyu Hou
  • Yi-Ping Phoebe Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5788)

Abstract

In this paper, we have proposed a method for 2D image retrieval based on object shapes. The method relies on transforming the 2D images into 3D space based on distance transform. Spherical harmonics are obtained for the 3D data and used as descriptors for the underlying 2D images. The proposed method is compared against two existing methods which use spherical harmonics for shape based retrieval of images. MPEG-7 Still Images Content Set is used for performing experiments; this dataset consists of 3621 still images. Experimental results show that the performance of the proposed descriptors is significantly better than other methods in the same category.

Keywords

Spherical harmonics content based image retrieval 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pu, J., Ramani, K.: On visual similarity based 2D drawing retrieval. Computer-Aided Design 38, 249–259 (2006)CrossRefGoogle Scholar
  2. 2.
    Sajjanhar, A., Lu, G., Zhang, D.: Spherical Harmonics Descriptor for 2d-Image Retrieval. In: IEEE International Conference on Multimedia and Expo., pp. 105–108 (2005)Google Scholar
  3. 3.
    Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation Invariant Spherical Harmonic Representation of 3d Shape Descriptors. In: Symposium on Geometry Processing, June 2003, pp. 167–175 (2003)Google Scholar
  4. 4.
    Kazhdan, M.: Shape Representations and Algorithms for 3d Model Retrieval, PhD Thesis, Princeton University (June 2004)Google Scholar
  5. 5.
    Borgefors, G.: Distance transformations in digital images, Computer Vision. Graphics and Image Processing 34(3), 344–371 (1986)CrossRefGoogle Scholar
  6. 6.
    Rosin, P.L., West, G.A.W.: Salience distance transforms. Graphical Models Image Processing 57, 483–521 (1995)CrossRefMATHGoogle Scholar
  7. 7.
    Attali, D., Boissonnat, J.: A Linear Bound on the Complexity of the Delaunay Triangulation of Points on Polyhedral Surfaces. Discrete and Computational Geometry 31(3), 369–384 (2004)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Toriwaki, J.I., Saitoh, T., Okada, M.: Distance transformation and skeleton for shape feature analysis. In: International Workshop on Visual Form, pp. 547–563 (1992)Google Scholar
  9. 9.
    Tsang, P.W.M., Yuen, P.C., Lam, F.K.: Classification of partially occluded objects using 3-poiny matching and distance transformation. Pattern Recognition 27, 27–40 (1994)CrossRefGoogle Scholar
  10. 10.
    Paglieroni, D.W.: Distance Transforms: Properties and machine vision applications. CVGIP: Graphical Models Image Processing 54, 56–74 (1992)Google Scholar
  11. 11.
    Healy, D., Kostelec, P., Moore, S.: FFTs for the 2-sphere-improvements and variations. Journal of Fourier Analysis and Applications 9(4), 341–385 (2003)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Driscoll, J., Healy, D.: Computing Fourier transforms and convolutions on the 2-sphere. Advances in Applied Mathematics 15, 202–250 (1994)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Borgefors, G.: Distance transformations in digital images. Computer Vision, Graphics, and Image Processing 34(3), 344–371 (1986)CrossRefGoogle Scholar
  14. 14.
    Zhang, D.S., Lu, G.: Review of Shape Representation and Description Techniques. Pattern Recognition 37(1), 1–19 (2004)CrossRefGoogle Scholar
  15. 15.
    Breu, H., Gil, J., Kirkpatrick, D., Werman, M.: Linear Time Euclidean Distance Transform Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(5), 529–533 (1995)CrossRefGoogle Scholar
  16. 16.
    Novotni, M., Klein, R.: Shape retrieval using 3D Zernike descriptors. Computer-Aided Design 36, 1047–1062 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Atul Sajjanhar
    • 1
  • Guojun Lu
    • 2
  • Dengsheng Zhang
    • 2
  • Jingyu Hou
    • 1
  • Yi-Ping Phoebe Chen
    • 1
  1. 1.School of Information TechnologyDeakin UniversityBurwoodAustralia
  2. 2.Gippsland School of Information TechnologyMonash UniversityChurchillAustralia

Personalised recommendations