Handwritten Signature On-Card Matching Performance Testing

  • Olaf Henniger
  • Sascha Müller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5707)


This paper presents equipment and procedures for on-card (in-situ) performance testing of biometric on-card comparison implementations using pre-existing databases of biometric samples. A DTW-based on-line signature on-card comparison implementation serves as an example test object. The test results presented are false match rates and false non-match rates over a range of decision thresholds on a per-test-subject basis. The results reveal considerable differences in the comparison-score frequency distribution among test subjects, which necessitates the setting of user-dependent decision thresholds or comparison-score normalization.


On-card comparison biometric performance testing  handwritten signature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grother, P., Salamon, W., Watson, C., Indovina, M., Flanagan, P.: MINEX II – Performance of fingerprint match-on-card algorithms – Phase II report. NIST Interagency Report NISTIR 7477, NIST, Gaithersburg, MD, USA (2008)Google Scholar
  2. 2.
    Jain, A., Griess, F., Connell, S.: On-line signature verification. Pattern Recognition 35, 2963–2972 (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Fiérrez-Aguilar, J., Ortega-Garcia, J., Gonzalez-Rodriguez, J.: Target dependent score normalization techniques and their application to signature verification. In: [13], pp. 498–504Google Scholar
  4. 4.
    Henniger, O., Franke, K.: Biometric user authentication on smart cards by means of handwritten signatures. In: [13], pp. 547–554Google Scholar
  5. 5.
    Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP-26(1), 43–49 (1978)CrossRefzbMATHGoogle Scholar
  6. 6.
    Kholmatov, A., Yanikoglu, B.A.: Identity authentication using improved online signature verification method. Pattern Recogn. Letters 26(15), 2400–2408 (2005)CrossRefGoogle Scholar
  7. 7.
    Yeung, D.Y., Chang, H., Xiong, Y., George, S., Kashi, R., Matsumoto, T., Rigoll, G.: SVC2004: First international signature verification competition. In: [13], pp. 16–22Google Scholar
  8. 8.
    Information technology – Biometric data interchange formats – Part 7: Signature/sign time series data. International Standard ISO/IEC 19794-7 (2007)Google Scholar
  9. 9.
    Information technology – Biometric performance testing and reporting – Part 1: Principles and framework. International Standard ISO/IEC 19795-1 (2006)Google Scholar
  10. 10.
    Ortega-Garcia, J., Fiérrez-Aguilar, J., Simon, D., Gonzalez, J., Faundez-Zanuy, M., Espinosa, V., Satue, A., Hernaez, I., Igarza, J.J., Vivaracho, C., Escudero, D., Moro, Q.I.: MCYT baseline corpus: a bimodal biometric database. IEE Proceedings Visual Image Processing 150(6), 395–401 (2003)CrossRefGoogle Scholar
  11. 11.
    Information technology – Identification cards – Part 4: Organization, security and commands for interchange. International Standard ISO/IEC 7816-4 (2004)Google Scholar
  12. 12.
    Müller, S., Henniger, O.: Evaluating the biometric sample quality of handwritten signatures. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 407–414. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Zhang, D., Jain, A.K. (eds.): ICBA 2004. LNCS, vol. 3072. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Olaf Henniger
    • 1
  • Sascha Müller
    • 2
  1. 1.Fraunhofer Institute for Secure Information TechnologyDarmstadtGermany
  2. 2.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations