Advertisement

Finite Satisfiability in Infinite-Valued Łukasiewicz Logic

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5785)

Abstract

Although it is well-known that every satisfiable formula in Łukasiewicz’ infinite-valued logic \(\mathcal{L}_{\infty}\) can be satisfied in some finite-valued logic, practical methods for finding an appropriate number of truth degrees do currently not exist. As a first step towards efficient reasoning in \(\mathcal{L}_{\infty}\), we propose a method to find a tight upper bound on this number which, in practice, often significantly improves the worst-case upper bound of Aguzzoli et al.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguzzoli, S.: An asymptotically tight bound on countermodels for łukasiewicz logic. International Journal of Approximate Reasoning 43, 76–89 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aguzzoli, S., Ciabattoni, A.: Finiteness in infinite-valued Łukasiewicz logic. Journal of Logic, Language, and Information 9, 5–29 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Aguzzoli, S., Gerla, B.: Finite-valued reductions of infinite-valued logics. Archive for Mathematical Logic 41, 361–399 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bobillo, F., Straccia, U.: Fuzzy description logics with general t-norms and datatypes. Fuzzy Sets and Systems (in press) doi:doi:10.1016/j.fss.2009.03.006Google Scholar
  5. 5.
    Bollobás, B.: Modern Graph Theory. Springer, Heidelberg (1998)CrossRefzbMATHGoogle Scholar
  6. 6.
    Ernst, M., Millstein, T., Weld, D.: Automatic SAT-compilation of planning problems. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence, pp. 1169–1176 (1997)Google Scholar
  7. 7.
    Hähnle, R.: Towards an efficient tableau proof procedure for multiple-valued logics. In: Börger, E., Kleine Büning, H., Richter, M., Schönfeld, W. (eds.) Selected Papers from Computer Science Logic, pp. 248–260. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  8. 8.
    Hähnle, R.: Many-valued logic and mixed integer programming. Annals of Mathematics and Artificial Intelligence 12, 231–264 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hähnle, R., Escalada-Imaz, G.: Deduction in multivalued logics: a survey. Mathware & Soft Computing 4(2), 69–97 (1997)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Janssen, J., Heymans, S., Vermeir, D., De Cock, M.: Compiling fuzzy answer set programs to fuzzy propositional theories. In: Proceedings of the 24th International Conference on Logic Programming, pp. 362–376 (2008)Google Scholar
  11. 11.
    Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: An o(m 2 n) algorithm for minimum cycle basis of graphs. Algorithmica 52, 333–349 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artificial Intelligence 157(1-2), 115–137 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    McNaughton, R.: A theorem about infinite-valued sentential logic. Journal of Symbolic Logic 16, 1–13 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete. Theoretical Computer Science 52, 145–153 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Mundici, D., Olivetti, N.: Resolution and model building in the infinite-valued calculus of Łukasiewicz. Theoretical Computer Science 200, 335–366 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Olivetti, N.: Tableaux for Łukasiewicz infinite-valued logic. Studia Logica 73(1), 81–111 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pham, D., Thornton, J., Sattar, A.: Modelling and solving temporal reasoning as propositional satisfiability. Artificial Intelligence 172(15), 1752–1782 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Schockaert, S., De Cock, M., Kerre, E.: Spatial reasoning in a fuzzy region connection calculus. Artificial Intelligence 173, 258–298 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Straccia, U., Bobillo, F.: Mixed integer programming, general concept inclusions and fuzzy description logics. Mathware & Soft Computing 14(3), 247–259 (2007)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into SAT. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 590–603. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Wagner, H.: A new resolution calculus for the infinite-valued propositional logic of Łukasiewicz. In: Proceedings of the International Workshop on First order Theorem Proving, pp. 234–243 (1998)Google Scholar
  22. 22.
    Zhang, L., Malik, S.: The quest for efficient boolean satisfiability solvers. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 641–653. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Dept. of Applied Mathematics and Computer ScienceGhent UniversityBelgium
  2. 2.Dept. of Computer ScienceVrije Universiteit BrusselBelgium
  3. 3.Institute of TechnologyUniversity of WashingtonTacomaUSA

Personalised recommendations