Finite Satisfiability in Infinite-Valued Łukasiewicz Logic

  • Steven Schockaert
  • Jeroen Janssen
  • Dirk Vermeir
  • Martine De Cock
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5785)

Abstract

Although it is well-known that every satisfiable formula in Łukasiewicz’ infinite-valued logic \(\mathcal{L}_{\infty}\) can be satisfied in some finite-valued logic, practical methods for finding an appropriate number of truth degrees do currently not exist. As a first step towards efficient reasoning in \(\mathcal{L}_{\infty}\), we propose a method to find a tight upper bound on this number which, in practice, often significantly improves the worst-case upper bound of Aguzzoli et al.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguzzoli, S.: An asymptotically tight bound on countermodels for łukasiewicz logic. International Journal of Approximate Reasoning 43, 76–89 (2006)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Aguzzoli, S., Ciabattoni, A.: Finiteness in infinite-valued Łukasiewicz logic. Journal of Logic, Language, and Information 9, 5–29 (2000)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Aguzzoli, S., Gerla, B.: Finite-valued reductions of infinite-valued logics. Archive for Mathematical Logic 41, 361–399 (2002)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bobillo, F., Straccia, U.: Fuzzy description logics with general t-norms and datatypes. Fuzzy Sets and Systems (in press) doi:doi:10.1016/j.fss.2009.03.006Google Scholar
  5. 5.
    Bollobás, B.: Modern Graph Theory. Springer, Heidelberg (1998)CrossRefMATHGoogle Scholar
  6. 6.
    Ernst, M., Millstein, T., Weld, D.: Automatic SAT-compilation of planning problems. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence, pp. 1169–1176 (1997)Google Scholar
  7. 7.
    Hähnle, R.: Towards an efficient tableau proof procedure for multiple-valued logics. In: Börger, E., Kleine Büning, H., Richter, M., Schönfeld, W. (eds.) Selected Papers from Computer Science Logic, pp. 248–260. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  8. 8.
    Hähnle, R.: Many-valued logic and mixed integer programming. Annals of Mathematics and Artificial Intelligence 12, 231–264 (1994)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hähnle, R., Escalada-Imaz, G.: Deduction in multivalued logics: a survey. Mathware & Soft Computing 4(2), 69–97 (1997)MathSciNetMATHGoogle Scholar
  10. 10.
    Janssen, J., Heymans, S., Vermeir, D., De Cock, M.: Compiling fuzzy answer set programs to fuzzy propositional theories. In: Proceedings of the 24th International Conference on Logic Programming, pp. 362–376 (2008)Google Scholar
  11. 11.
    Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: An o(m 2 n) algorithm for minimum cycle basis of graphs. Algorithmica 52, 333–349 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artificial Intelligence 157(1-2), 115–137 (2004)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    McNaughton, R.: A theorem about infinite-valued sentential logic. Journal of Symbolic Logic 16, 1–13 (1951)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete. Theoretical Computer Science 52, 145–153 (1987)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Mundici, D., Olivetti, N.: Resolution and model building in the infinite-valued calculus of Łukasiewicz. Theoretical Computer Science 200, 335–366 (1998)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Olivetti, N.: Tableaux for Łukasiewicz infinite-valued logic. Studia Logica 73(1), 81–111 (2003)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Pham, D., Thornton, J., Sattar, A.: Modelling and solving temporal reasoning as propositional satisfiability. Artificial Intelligence 172(15), 1752–1782 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Schockaert, S., De Cock, M., Kerre, E.: Spatial reasoning in a fuzzy region connection calculus. Artificial Intelligence 173, 258–298 (2009)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Straccia, U., Bobillo, F.: Mixed integer programming, general concept inclusions and fuzzy description logics. Mathware & Soft Computing 14(3), 247–259 (2007)MathSciNetMATHGoogle Scholar
  20. 20.
    Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into SAT. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 590–603. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Wagner, H.: A new resolution calculus for the infinite-valued propositional logic of Łukasiewicz. In: Proceedings of the International Workshop on First order Theorem Proving, pp. 234–243 (1998)Google Scholar
  22. 22.
    Zhang, L., Malik, S.: The quest for efficient boolean satisfiability solvers. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 641–653. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Steven Schockaert
    • 1
  • Jeroen Janssen
    • 2
  • Dirk Vermeir
    • 2
  • Martine De Cock
    • 1
    • 3
  1. 1.Dept. of Applied Mathematics and Computer ScienceGhent UniversityBelgium
  2. 2.Dept. of Computer ScienceVrije Universiteit BrusselBelgium
  3. 3.Institute of TechnologyUniversity of WashingtonTacomaUSA

Personalised recommendations